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A finite-size particle scheme for the numerical solution of two- and three-dimensional
gas dynamical problems of astronomical interest is described and tested. The scheme
is then applied to the fission problem for optically thick protostars. Results are given,
showing the evolution of one such protostar from an initial state as a single, rotating
star to a final state as a triple system whose components contain 60% of the original
mass. The decisiveness of this numerical test of the fission hypothesis and its relevance

to observed binaries are briefly discussed.

INTRODUCTION

THE hypothesis that fission is the mechanism
by which close binaries are formed has regained
favor in recent years. Those responsible for this revival
(Lynden-Bell 1964, 1965; James 1964; Stoeckly 1965;
Roxburgh 1966; Bodenheimer and Ostriker 1970; Le-
bovitz 1972, 1974) have rebutted earlier theoretical
objections (see also Ostriker 1970) and have discussed
the hypothesis in the context of our current under-
standing of pre-main-sequence evolution. The- early
history of the fission hypothesis and the related investi-
gations into the figures of equilibrium of rotating liquids
has been summarized by Chandrasekhar (1969).
Although fission is now commonly considered to be
the most likely explanation for the existence of close
binaries, the hypothesis cannot be regarded as proved
until the evolution of a rotating protostar has been fol-
lowed from an initial state as a single star to a final state
as a detached binary system. This is a formidable prob-

‘lem, however, since it requires the ability to compute the

three-dimensional motion of a self-gravitating, com-
pressible gas. Fortunately, some simplifying circum-
stances make it less than forbidding. First, the high
frequency of close binaries over a wide mass range surely
implies that no special characteristics of the properties
of stellar matter are essential to binary formation; con-
sequently, these properties need not be treated accu-
rately.

A second and crucial simplification concerns the
spatial resolution of the calculation. Because the initial
departure from axial symmetry is due to the onset of
dynamical overstability for a mode of low order, we
might reasonably hope that the subsequent evolution can
be adequately followed with a low-resolution description
of the protostar’s structure. If this is indeed so, the
problem can be tackled with present-day computers.

On the assumption, therefore, that a decisive test of

) Permanent address: Department of Astronomy, Columbia Uni-
versity, New York, NY 10027.

the fission hypothesis might be provided by a three-
dimensional gas dynamical calculation of low spatial
resolution, the bulk of this paper is devoted to describing
(Sec. IT) and testing (Sec. I1I) a numerical scheme for
carrying out such calculations. This scheme is then used
(Sec. IV) to follow the contraction of a rotating protostar
and results illustrating the fission mechanism are ob-
tained.

I. ASSUMPTIONS AND EQUATIONS

In this section, after stating our assumptions, we derive
the basic equations in the form used when applying the
numerical technique of Sec. II.

(a) Assumptions. A rotating, axisymmetric, optically
thick protostar of homogeneous composition will be the
starting point of the calculation, and this protostar’s
evolution will be followed up to and beyond the point of
instability to a nonaxisymmetric perturbation. To ensure
that contraction does not halt prior to this point, energy
generation by nuclear burning will be omitted. Ac-
cordingly, the basic equations are those describing the
motion of a self-gravitating, compressible gas with en-
tropy changes occurring only as a result of radiative
conduction.

In accordance with the argument that the detailed
properties of stellar matter cannot be of decisive im-
portance, we assume that the matter is a fully ionized
perfect gas and that radiation pressure may be neglected;
the ratio of specific heats y and the mean molecular
weight u are then constants. In addition, we assume that
the opacity « is independent of state variables.

(b) Units. In the interest of computational accuracy,
it is useful to express dimensions in terms of a time-
dependent length scale R(f) chosen so as to largely
eliminate the protostar’s contraction. We also adopt Jit,
the protostar’s mass, as the unit of mass, 7, = (R3/
GM)'/2 as the unit of time, and T', = (umy/k)(GM/R)
as the unit of temperature. In terms of these basic units,
we now take R/, to be the unit of velocity, 1/7. to be
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Summary. A new hydrodynamic code applicable to a space of an arbitrary
number of dimensions is discussed and applied to a variety of polytropic
stellar models. The principal feature of the method is the use of statistical
techniques to recover analytical expressions for the physical variables from a
known distribution of fluid elements. The equations of motion take the form
of Newtonian equations for particles. Starting with a non-axisymmetric distri-
bution of approximately 80 particles in three dimensions, the method is found
to reproduce the structure of uniformly rotating and magnetic polytropes to
within a few per cent. The method may be easily extended to deal with more
complicated physical models.

1 Introduction

Many of the most interesting problems in astrophysics involve systems with large departures
from spherical symmetry. This may occur either because the initial state lacks spherical
symmetry, as in the case of a protostar forming from a dense interstellar cloud, or because
non-spherical forces arising from rotation or magnetic fields, as in the case of the fission of a
rotating star, play an important part in the dynamics. Frequently these sources of non-
spherical symmeiry will be found combined.

Because of the complexity of these systems numerical methods are required to follow
their evolution. However, the standard finite difference representations of the continuum
equations are of limited use, because of the very large number of grid points required to
treat each coordinate on an equal footing. If, for example, 20 points along the radial direc-
tion give adequate accuracy for a spherical polytrope, we may require (20)® such points to
give the same accuracy for a highly distorted polytrope. This difficulty is mirrored in the
evaluation of multiple integrals.

For the astrophysical problems a numerical method which allows reasonable accuracy for
a small number of points is required. Ideally it should also be simple to program and robust
An early attempt to provide such an alternative to the standard [inite difference method was
made by Pasta & Ulam (1959). They replaced the continuous fluid by a fictitious set of
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Useful reviews:

* Monaghan (1992) ARAA 30: 543--574

* Monaghan (2005) Rep. Prog. Phys. 68: 1703--1759
* Springel (2010) ARAA 48:391--430

* Price (2012) J Comp Phys. 759, 231

A PowerPoint presentation focusing on magnetic fields in SPH:
* https://jameswurster.bitbucket.io/files/spmhd.pdf
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A1 Dividing the domain

» Given a domain, how do we divide it up?
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| Dividing the domain: Grid

» Given a domain, how do we divide it up?
» Eulerian Grid: divide domain into fixed volume elements
» Cells of well-defined position and volume
» Scalars are calculated at cell-centre; vectors are calculated at cell-interface

x1a(i-1) x1a(i) x1a(i+1) x1a(i+2)
el 1 ] ] 1
g : e dx1a(i-1) e dx1a() —ple dx1a(i+1) —pi
2 x2a(j+2) - - ! . ! . ' . '
g 1 1 )
5 ' [} ]
5%x10'6 = T : : :
6x107 dx2a(+1) f-—-_ - (P WG SIS I L - | __ x2b(j+1)
' ij+1 b+ : T
! " :
x2a(j+1) X . ! I"‘* ] dx2b(j+1)
i ! i
E 4x10718 N ' i
5 6x220) @3- -~ - - - ---- > -} X x2b()
R bk i lij 1 Vsl
oy . )
x2aG) Y- 1* ! i"’ I“"’ dx2b(j)
2x1018 E E E
I I ]
5%1016 dx2a(j-1) f—---- Femmm S R R Femmm- L Y x2b(j-1)
: ij-1 : ij-1 :
. : i,j—1 :
x2a(-1) X . [ -

t— dx1b(i) —me— dx1b(i+1) -
1 ] 1

x1b(Ai—1) xﬂ)(i) x1b(-i+1)

Grid from Zeus2D (Stone & Norman, 1992)
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| Dividing the domain: SPH

» Given a domain, how do we divide it up?

» Lagrangian particles: Divide domain into mass elements

5x1016

5 o
N
5x1016

[ [ T T
....................... t=0yrs
| | |
5%x10!16 0 5x10!16

» Each particle has the same
fixed mass

» Dense regions are represented
by more particles than less-
dense regions

» Characteristics are calculated
at the particles’ locations



Dividing the domain: SPH

» How do we distribute the initial particles for
uniform density (top)? For centrally condensed (bottom)? Does it matter (Morris, 1996)?

Random Shell Setup

Cubic Lattice

Shell Setup

Stretched Cubic
Lattice

Diehl, Rockefeller, Fryer, Riethmiller & Statler (2015); particle size represents spacing/volume
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....................... =oyrs { » Density is a fundamental
IR T NN | astrophysical property and
T | Crucial to astrophysiCS.
................... » In a grid, density is simply
................ (r) = total mass in cell
................ . PAT) = volume of cell
............... » How is density calculated on a
g Lo cEEEEEEEE————— . - - | set ofparticles?
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» How is density calculated?

5x10!16

5 o
N
-5x1016

ooooooo

-------

» Density summation

Nneigh

Z mbW(r — Iy, h),

b=1

» where
» N is number of neighbours
» my 1s particle mass
» W is smoothing kernel

» The kernel is effectively a
weighting function to
determine how much particle b
should contribute to the value

atr
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Density

» How is density calculated?

5x10!16

- .

z [cm]

-5x101

-------

» Density summation

Nneigh

p(r) = Y  mpW(r —rp,h),
b=1

> where

» N is number of neighbours

» my 1s particle mass
» W is smoothing kernel

» Simplest kernel is a Gaussian:

(r —r')?

h2

o

hd

Wi(r—r1',h) = — exp [—

» where
» his a scale parameter

12



| Density: smoothing kernel

» How is density calculated?

1.2

0.8 |

0.4

02 |

~ Gaussian (h=1) —
Gaussian (h=0.5)

o r—r')?
W(r—r’,h):mexp [—( 3 ) ]

» Caution
» h is a free parameter in this method
» W >0 for all x, therefore all particles
are neighbours
» Desired function
» a function similar to a Gaussian curve
» a function where W =0 for g > g,

0.5

1 1.5 2 2.5 3
q=x/h

14



|Density: Smoothing kernel

» How is density calculated?

0-7 ~ Gaussian (h=1) ——
Cubic Spline (h=1) ——
0.6 |
W(lr—1'|,h) = zzw(q)
0.5 | q=|r—r'|/h
12-aP—(1-9¢° 0<q<l;
04 | w(q) U{ 12-a)°, 1 <gq<2
) 0. q > 2,
=
03 | » For the Gaussian, W > 0 for all x, therefore
all particles are neighbours
02 | » For the Cubic spline, W = 0 for g > 2h
0.1 |
0 )
0 0.5 1 1.5 2 2.5 3

15
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| Density: Determining h

5x10!16

z [cm]
o

-5x101

» Density summation

Nneigh

p(r) = Y  mpW(r —rp,h),
b=1

» Where

» N is number of neighbours

» my 1s particle mass

» W is smoothing kernel

» What is h?

» If fixed, then some
particles will have many
more neighbours than
others —
bad & inefficient!
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| Density: Determining h

» How is density calculated?

a5 v » Density summation

5x10!16

z [cm]
o

_5x1016 | 2 s s s s e e s+ e e s e & e e s e 2 2 s s 2 e s s s .

Nyecigh
Z mbW(r — Iy, h),
b=1
» Where
» N is number of neighbours
» my 1s particle mass
» W is smoothing kernel

» What is h?
» Variable depending on

density

p(r) =

17



“| Density: Determining h

» How is density calculated?

5x10!16

z [cm]
o

_5x1016 | 2 s s s s e e s+ e e s e & e e s e 2 2 s s 2 e s s s .

» Density summation
Pa = Z mbWab (ra — Ty, ha)
b
» Smoothing length relation

n{—
Pa

» These equations must be
iteratively solved

he =

» For a cubic spline in 3D,
there will be Nyejgn ~ 57

> Note:
higher density
<> smaller smoothing length

<> higher resolution .



i| Kernel interpolation

» To calculate a quantity at r from its neighbours at r”:

A(r) = /A(r’)5(r — r')dr’, > Identity

/ / / 2
— /A(r )W(r —r’, h)dr + O(h7), » Replace 8-function with kernel
/
~ / A(r/)W(r — 7', h)p(r")dr’, » multiply p/p
p(r')
Neigh A
~ Z mb—bW(r — 7y, h) » replace integral with summation
— Pb » replace volume integral pdV with

mass

19



First Derivatives

> First derivative

VA(r) = 0

N, neigh

o [ AW~ By O(k2),

~ Z mbﬂVW('r — 7y, h)

b1 Pb

» Warning!

> Derivative is not zero is 4 is constant
» A simple way to correct this is:

1
1 nelgh @ A
(}T Z my, b b
Nn
_ L
= @a

b=1

N, neigh

( a_rbvh)_ Zmb

b=1

Aa) VW(’I‘G — Ty, h),

q)bAa
Pb

VW(rey —ry, h)

Y

22



1
VA= 2 [V(4) - AV,
Nieigh Nneign
1 g Py Ay, } g: ®pAq
Aa = E a — 7h - |44 a ’h
v o | = e Pb VWirs =7, h) b—1 " Pb VW = 7o )
Nneigh
1 )
P, TP

» where ¢ is a scalar and 4 is assumed to be constant
» The two obvious choices are ¢ = 1.

Nieioh
1 neig
VAa = — my (Ab — Aa) VW(T‘a — Ty, h),
Pa 5
» and ¢ = p
Nneigh
my
VA, = Z — (A — Ay) VW (rq — 1, h),
p—1 Pb

» Additional terms are required if / varies in space & time (see review papers)



Continuum Hydrodynamic Equations

» Continuum Equations:
» Continuity Equation

dp
o Vv
dt P

» Equation of Motion
d 1
=~ = _Zvp
dt 0

» Energy Equation
d P
du _ Pg
dt 0

» Equation of state (e.g.)
P = (y=1)pu

24



» Discrete Equations:
» Density Equation

m 1/3
ZmbWab(ha); ha =1 <a>

> Equation of motion

i

> Energy Equatlon
du,

el Qa;?,, zb:mbvgbVZWab(ha)
» Equation of state (e.g.)

Po = (v—1)patia
» where

these values are calculated for particle a using the properties of all the neighbours, b

Wap(he) = Wap(re — 718, he); vl = ve — vg; €2, accounts for variable h
25



Sod Shock Tube

density

T T T T
1 (=0 -
05 .
1 1 t t
-0.4 -0.2 02 0.4
2
< T T T T
1.5 -
1 |- il
1 1 1 1
-0.4 -0.2 0.2 0.4

Vy

pressure

038

0.6

0.4

o
W

T T T T
1 1 ] ]
-0.4 -0.2 02 0.4
T T T T
1 1 1 1
-0.4 -0.2 0.2 0.4
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7= -./|Sod Shock Tube — what went wrong?

» The previous equations were exact
numerical representations of the
continuum equations

» Did not account for numerical
effects

| » Require numerical terms to compensate

for artificial numerical processes:

» Equation of motion:

, e o Atrtificial viscosity

' ' » Energy Equation:

Artificial conductivity

1

density

pressure

Various forms:
see (e.g.) Monaghan (1992, 2005), Springel (2010), Price (2012)




e ;/o: Ty 2/ ° [ °
- -/180d Shock Tube — with artificial terms
» Maximal artificial viscosity and conductivity
| . I . | A | . | | d I , | ! | . |
1 t=0 - 08 |
06
2 o5l . =
02 |
I B — — — 0 L)
04 02 0 02 o4 04 02 0 0z 04
9,
= | | | | | | | | | |
1
5 ] &
= £ 05|
(=W
| - -
1 1 l 1 1 0 1 1 l 1 1

04 02 0 02 04 04 02 0 02 04




B Summary to date

» When developing / modifying code:
» Convert the continuum equations into discrete equations
» Account for variable smoothing lengths
» Careful with your choice of discretisation for derivatives
» Apply artificial terms as required
» generally only two required for hydrodynamics

29



V VY

YV V V

Timestepping

The timestep must be correctly chosen so that all included processes are resolved in time
Many physical processes require their own timestep; all are calculated and the smallest is used
A most general timestep is a CFL-like timestep:

h
dt = C—

Usig

where vy, 1s the signal velocity, which is related to the sound speed and dv
C < 1 1s a coefficient (typically set 0.3)
For higher densities (i.e. smaller /#), timestep is shorter

Timestepping options:

» Global timestepping
» Every particle is evolved with the same (minimum) d¢
» Excellent energy conservation
» Simple to implement

» Individual timestepping
» Particles are evolved as per their own dz
» Weaker energy conservation
» Considerably increases computational efficiency for most projects



Sink particles

» If gas density becomes too high, then simulation becomes prohibitively expensive to run
» Replace dense regions with ‘sink’ particles (Bate, Bonnell & Price 1995)
» See star cluster simulation, where each sink represents one star

0
3 -0.02
N

-0.04 on-ideal MHD

0 ,

v}
2 -0.02
N

-0.04 SREEIRVIE)

-0.02 0 0.02-0.02 0 0.02-0.02 0 0.02-002 0 0.02-002 0 0.02-0.02 0 0.02-0.02 0 0.02
X [pc] X [pcl] X [pc] X [pc] X [pc] X [pc] X [pcl]

-2 -1 0 1
log column density [ g/cm?]
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Sink particles

» If gas density becomes too high, then simulation becomes prohibitively expensive to run
» Replace dense regions with ‘sink’ particles (Bate, Bonnell & Price 1995)
» Sinks have a fixed (parametrised) radius; in this figure, 6.67au
» Sinks accrete gas, thus increase their mass
» Sinks feel only gravity: there are no pressure forces and no magnetic forces
» Sinks act like an inner boundary condition; information is lost near and within the sink

radius ' | ' | |
- o roomom t=0.025 Myr

=) | =

214 L

log density [g/cm?]

-18

log r [au]



Gravity

» Momentum equations including gravity:

@ _ _lyp_ve
dt p
Vid = 4nGp

» Poisson’s equation is non-trivial to solve
» Rather, for each particle, we sum the forces from all other particles
» This is done using a tree, where the particles are divided into ‘leaf-nodes’ of ~10 particles:

05

-0.5
I

o Ry .,.-..; I-‘.'.‘:'f-‘:" ‘ ] 33
Price+ (2018) 0 02




Gravity: Short-range forces

— — ——» For a given particle, we

| R R MR R | perform an N? calculation over
L CIRETY RECIRE N ...:.: o0 -: :, :.""l‘ .o Lo R .: . _ . . . .
R O o e all particles within its leaf-node,
R SRS o RPN ST LY v S I LR SRS - 1
I st s RS W ot and all leaf-node within 2/
ll? B o . -.:-..“.'. '..- ..5';.‘:‘: ..' { :.:’.‘ ’l\.lo.:..:':":‘.~:‘.'. .:.* _ .
S T T R b T i el e A L e L ek > Not all of these particles are
- Bt GO T ok A e 38 g e 1
T AT AR s ?: RO guaranteed to be within 2/
IR X v 25 A ISR P BT T F » If within 24, particle
R P I A L S o LRI T RN .
PR R T : ; i > % ‘fg Nl T contributes a softened
-~ " o -.;,." .?:.-"5:‘ °0° o3 .‘.'9;' ‘.:_- ':' .:“‘i LIS :- . . .
S {‘, A : A ‘g\.[, TIVCERE gravitational force using a
b 3 o° . .-.'- '-:;.g: ° . t o d '.:.‘-ﬁ .'i;:. '-.:,':-' ° ,"
R s+ R kernel
. St Lok '.:.‘ -"..-:- &, (s %ocdb, o2 o % Solae e et . .
R R T 1 2 Ty S S > If outside of 24, particle
e - o < *: L .'.'-” h:‘.’& e ' oo, o 3 '..'. : ". .\: ;.‘ : .
ke : R R A contributes 1/72
RO P s v 3 : D A S R O .
IR R i e N s e T LA gravitational force
g [Tl s o 5 AR Y SRS i
AR L5k S8 PR ind Gt < "-'1-.'3? L i
* -~ ".:;:.j':‘.":fz::?. s o, -..: 3 “' . 3: ‘30 :.'.‘-‘: 'y s i -
' : 4 1:.‘:‘ FE YR T A St KR Oy e e BN OO
R R AR T TR T T S ' -
- ..:. |.. .~.. ”"» .-:E"..c:.‘.:.! X ‘.' ".'b':'.‘ ;- :.. % 4 -
i k CRLNES TR S i ‘: \ S |

Price+ (2018)



Gravity: Long-range forces

— e ———» For particles in remaining

| I A R L | leaves, leaves are combined by
- e ° e, ‘e ™ .'o:.: ._:, ': s, :"."" oo LI % .: ®e - . .
R s e TR size and distance from the
R ot s T 2 DI T I ] .
| R R - P AT T gL e e il target particle
v | B o e G Rtk NP Sl St e § LI VR _ . .
< vt L R AN Al S T g LT » Each combination of leaves
- N R 90 Foe sy e L .
IR, T ¥ ol s e S‘f',,,%. IS PO should have a similar angular
i .. . H .5“.".-.'.”-. -:- Jed FNTAFLIC D S0 % [0 0f _:1'{:,::' a L. | . .
EIRERT ik S P TI size as viewed from the target
e R N 55; S ; e 2 ot S "fg el U particle
R TR 28 5% A R R e I T )
L v RO ARG ErRmaer vy e L 3 Each combined leaf makes a
S e N Ry A ; i %5 -'-5'."\.5[*’ ALt e
WL IPE IO SIS NS vk 7 s q 2 Je PO P N ¢ . . .
o o [t TR R T SR I single contribution to the
v & s iEe FIFSE S RSN
»°F '.:. . ..u o, (! _-' :. o o 0...0 . . . .
R R T 1 1 2 F e SR N gravitational force, using total
*o *: L .'.'-”:-..o..'& oo, o 3 .a.'. : ... :‘: ;.‘ :
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Gravity

» For efficiency, split gravity into three components:
» Inside red circle: softened force since neighbour is within 2/
» Inside blue square: 1/r2 force since this represents all leaf-nodes within 2/ of the particle
» Each yellow rectangle is a combined group of leaves; each makes a single contribution

" " o " ] " '.' " . " g
I' [

. .
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Gravity + sinks

» Sink particles (generally) do not exist in the tree

» Sink-sink & sink-gas gravity are treated as only short range & mid-range

> At every step, this leads to minimum Ngjy® + NgasNsink gravity calculations

» If sinks have formed a tight binary (or higher order system), then small timesteps are required
to resolve the binary orbit. Sink-sink & sink-gas gravity only are calculated on these very
short timesteps
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» Continuum Equations:
» Continuity Equation

d
g —pV - v
» Equation of Motion
1 B? 1
© -y Km 2_) I —BB]
» Induction Equatior'lo Ho Ho
dB
E = VX(’UXB):(BV)’U—B(V’U)
» Energy Equation
d P
du _  Po
dt 0

» Equation of state (e.g.) P — (fy — 1) pU



» Continuum Equations:
» Continuity Equation

d
- —pV - v
» Equation of Motion
1 B? 1
v 1y [<P+ —) I— —BB]
dt p 200 o

» Induction Equation

1) - (o)

» Energy Equation

du P
- V.
dt 0 b

» Equation of state (e.g.) P — (fy — 1) pU



| Discrete Magnetohydrodynamic Equations

» Discrete Equations:
» Density Equation

o\ /3
> mWap(ha); ha =1 (—“)
b

> Equation of Motion

Szg Szj
= 2o g VaWalhe) + g VW)
CL a b
> Inductlon Equatlon
d (B i
alo) = Qp ZmbvbBVWab(h)
» Energy Equation "
du,
it 0 p2 Zmbvabv] Wap(ha)
» MHD stress tensor
Ny 1 1
SS9 = (P + —BQ) 69 + —B'BJ
2410 Ho

» Note: In all SPMHD equations, B has been normalised such that B = B/,/uo



\ ‘ Magnetic Fields

Magnetic fields are numerically difficult

Require artificial resistivity (see Wurster, Bate, Price & Tricco 2017)

Require enforcement of V.B =0

Analytically V- B =0 | but this is not numerically guaranteed

To enforce V- B =0, we include ‘divergence cleaning’ (Tricco, Price & Bate 2016)

YVVVY

h|V-B
In MHD simulations, trackHT‘lto ensure it remains small (see also Dobbs & Wurster 2021)

A\

» MHD simulations are often slower and more care is generally needed than purely
hydrodynamic simulations

41



» Dust is a pressure-less fluid that interacts with itself and gas via gravity and drag only

» For large dust grains, two-fluid approach is optimal
» Dust and gas are each represented using a different set of particles
» Dust and gas particles can be accreted onto sink particles

% + V- (pevy) =0,

% + V- (pavq) = 0,

Pg (% + v, - va> = po f + K(vg —vy) — VP,
Pd (% + g - Vvd> = paf — K(vqg — vy),

Laibe & Price (2012); Lagrangian formalism so 5, = 5;

Dipierro£{2015)



» Dust is a pressure-less fluid that interacts with itself and gas via gravity and drag only
» For small dust grains, one-fluid approach is optimal

» An evolving fraction of each particle is dust and the remaining fraction is gas

» These hybrid particles can be accreted onto sink particles

dp

- = —p(V.

” p(V.v),

de L el = e) pa]

—_— = —— - le —_ R

dr 0 p

dv 1

™ = (l—e)fg—i—efd—;V-[e(l—e)pAvAv]-l—f,
dAv Av 1

e =—t—+ (fa— fo) —(Av- V)v+2v[(2e—1)Av

Laibe & Price (2014); Lagrangian formalism so 2

log [0, dz [g/em’]
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nl“ | Boundary Conditions

» Boundaries are optional in SPH
» Particles are free to go where they physics takes them!
» e.g. collapse of a sphere
» e.g. evolution of a turbulent hydrodynamic sphere (Bate 2012)
» e.g. galaxy merger simulation (Wurster & Thacker 2013a,b)

Cubic Lattice
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',L“ | Boundary Conditions

» Boundaries are not optional when evolving magnetic fields!

» Cannot coherently evolve the ‘end’ of a magnetic field line

» Most common magnetic boundary: ‘sphere-in-box’-style with periodic boundaries
(e.g. Wurster+ 2016,2017,2018abcd,2019,2020ab,2021)

» Embed sphere in low density medium (e.g. with density ratio 30:1)

» Thread magnetic field throughout the entire domain

z [em]

» Use periodic boundaries at the edge of the box, where magnetohydrodynamic forces are

x10'0 L

x10'0 -

periodic but gravity is not

density [g/cm?]



B Summary to date

» When developing / modifying code:
» Convert the continuum equations into discrete equations
» Account for variable smoothing lengths
» Careful with your choice of discretisation for derivatives
» Apply artificial terms as required
» generally only two required for hydrodynamics
» a third is required for magnetohydrodynamics

» Additional physical processes can be modelled via using SPH (e.g.)
» gravity
» very dense regions via sink particles
» magnetic fields (required cleaning, artificial resistivity, & boundaries)

> dust
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. 8 Coding Words of Wisdom

» Always comment your code!

» Never hard-code parameters, even when testing!
(at the very least, define all parameters at the top of the
file for clarity, consistency, and ease of ability to change)
"Always code as if the guy who ends up

maintaining your code will be a violent
psychopath who-knows where you live."

~ John Woods

& 99 little bugs in the code.
> 99 little bugs in the code.
“l\_ Take one down, patch it around.
:\}
£ 127 little bugs in the code...
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