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t=108400 yrs

Smoothed Particle Hydrodynamics

2

https://www.youtube.com/watch?v=CLhmaOhj5RU&t=2s



Historical Overview
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Historical Overview
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Useful reviews:

• Monaghan (1992) ARAA 30: 543--574

• Monaghan (2005) Rep. Prog. Phys. 68: 1703--1759 

• Springel (2010) ARAA 48:391--430 

• Price (2012) J Comp Phys. 759, 231

A PowerPoint presentation focusing on magnetic fields in SPH:

• https://jameswurster.bitbucket.io/files/spmhd.pdf

https://jameswurster.bitbucket.io/files/spmhd.pdf


Dividing the domain
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Ø Given a domain, how do we divide it up?
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Dividing the domain: Grid
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Ø Given a domain, how do we divide it up?

Ø Eulerian Grid: divide domain into fixed volume elements

Ø Cells of well-defined position and volume

Ø Scalars are calculated at cell-centre; vectors are calculated at cell-interface

Grid from Zeus2D (Stone & Norman, 1992)
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Dividing the domain
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Ø Given a domain, how do we divide it up?
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Dividing the domain: SPH

8

Ø Given a domain, how do we divide it up?

Ø Lagrangian particles: Divide domain into mass elements

Ø Each particle has the same 

fixed mass 

Ø Dense regions are represented 

by more particles than less-

dense regions

Ø Characteristics are calculated 

at the particles’ locations

x [cm]

z 
[c

m
]

-5×1016 0 5×1016

-5×1016

0

5×1016

t=0 yrs



Dividing the domain: SPH
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Ø How do we distribute the initial particles for 

uniform density (top)? For centrally condensed (bottom)?  Does it matter (Morris, 1996)?

Diehl, Rockefeller, Fryer, Riethmiller & Statler (2015); particle size represents spacing/volume



Ø Density is a fundamental 

astrophysical property and 

crucial to astrophysics.  

Ø In a grid, density is simply 

Ø How is density calculated on a 

set of particles?

Density

10

Ø How is density calculated?
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Ø Density summation

Ø where

Ø N is number of neighbours

Ø mb is particle mass

Ø W is smoothing kernel

Ø The kernel is effectively a 

weighting function to 

determine how much particle b

should contribute to the value 

at r

Density
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Ø How is density calculated?

ρ(r) =

Nneigh
X

b=1

mbW (r− rb, h),
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Ø Density summation

Ø where

Ø N is number of neighbours

Ø mb is particle mass

Ø W is smoothing kernel

Ø Simplest kernel is a Gaussian:

Ø where

Ø h is a scale parameter

Density
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Ø How is density calculated?

ρ(r) =

Nneigh
X

b=1

mbW (r− rb, h),
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Density: smoothing kernel
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Ø How is density calculated?
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Ø Caution

Ø h is a free parameter in this method

Ø W > 0 for all x, therefore all particles 

are neighbours

Ø Desired function

Ø a function similar to a Gaussian curve

Ø a function where W = 0 for q > q0



Density: Smoothing kernel
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Ø How is density calculated?
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<

:

1

4
(2− q)3 − (1− q)3, 0 ≤ q < 1;

1

4
(2− q)3, 1 ≤ q < 2;

0. q ≥ 2,

re q = |r−r
0|/h

Ø For the Gaussian, W > 0 for all x, therefore 

all particles are neighbours

Ø For the Cubic spline, W = 0 for q > 2h



Ø Density summation

Ø Where

Ø N is number of neighbours

Ø mb is particle mass

Ø W is smoothing kernel

Ø What is h?

Ø If fixed, then some 

particles will have many 

more neighbours than 

others  → 

bad & inefficient!

Density: Determining h
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Ø How is density calculated?

ρ(r) =

Nneigh
X

b=1

mbW (r− rb, h),
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Ø Density summation

Ø Where

Ø N is number of neighbours

Ø mb is particle mass

Ø W is smoothing kernel

Ø What is h?

Ø Variable depending on 

density

Density: Determining h
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Ø How is density calculated?
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Ø Density summation

Ø Smoothing length relation

Ø These equations must be 

iteratively solved

Ø For a cubic spline in 3D, 

there will be Nneigh ~ 57

Ø Note: 

higher density 

↔ smaller smoothing length

↔ higher resolution

Density: Determining h
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Ø How is density calculated?
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Kernel interpolation
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Ø To calculate a quantity at r from its neighbours at r’:

A(r) =

Z

A(r0)δ(r � r
0)dr0,

=

Z

A(r0)W (r � r
0, h)dr0 +O(h2),

⇡

Z

A(r0)

ρ(r0)
W (r � r

0, h)ρ(r0)dr0,

⇡

Nneigh
X

b=1

mb
Ab

ρb
W (r � rb, h)

Ø Identity

Ø Replace !-function with kernel

Ø multiply ⍴/⍴

Ø replace integral with summation

Ø replace volume integral ⍴dV with 

mass



First Derivatives
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Ø First derivative

Ø Warning!

Ø Derivative is not zero is A is constant

Ø A simple way to correct this is:

rA(r) =
∂

∂r

Z
A(r0)W (r � r

0, h)dr0 +O(h2),

⇡

NneighX
b=1

mb

Ab

ρb
rW (r � rb, h)
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Φ
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First Derivatives
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Ø where ɸ is a scalar and h is assumed to be constant

Ø The two obvious choices are ɸ = 1:

Ø and ɸ = ⍴:

Ø Additional terms are required if h varies in space & time (see review papers)
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Continuum Hydrodynamic Equations
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Ø Continuum Equations:

Ø Continuity Equation

Ø Equation of Motion

Ø Energy Equation

Ø Equation of state (e.g.)

dρ

dt
= �ρr · v

dv

dt
= �

1

ρ
rP

du

dt
= �

P

ρ
r · v

P = (γ � 1) ρu
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Discrete Hydrodynamic Equations
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Ø Discrete Equations:

Ø Density Equation

Ø Equation of motion

Ø Energy Equation

Ø Equation of state (e.g.)

Ø where

these values are calculated for particle a using the properties of all the neighbours, b

Wab(ha) ⌘ Wab(ra � rb, ha); viab ⌘ via � vib;Ωa accounts for variable h



Sod Shock Tube
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Ø As written on the previous slide



Sod Shock Tube – what went wrong?
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Ø The previous equations were exact 

numerical representations of the 

continuum equations

Ø Did not account for numerical 

effects

Ø Require numerical terms to compensate 

for artificial numerical processes:

Ø Equation of motion: 

Artificial viscosity

Ø Energy Equation: 

Artificial conductivity

Various forms:

see (e.g.) Monaghan (1992, 2005), Springel (2010), Price (2012)



Sod Shock Tube – with artificial terms
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Ø Maximal artificial viscosity and conductivity



Summary to date
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Ø When developing / modifying code:

Ø Convert the continuum equations into discrete equations

Ø Account for variable smoothing lengths

Ø Careful with your choice of discretisation for derivatives

Ø Apply artificial terms as required

Ø generally only two required for hydrodynamics



Timestepping
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Ø The timestep must be correctly chosen so that all included processes are resolved in time

Ø Many physical processes require their own timestep; all are calculated and the smallest is used

Ø A most general timestep is a CFL-like timestep:

Ø where vsig is the signal velocity, which is related to the sound speed and dv

Ø C < 1 is a coefficient (typically set 0.3)

Ø For higher densities (i.e. smaller h), timestep is shorter

Ø Timestepping options:

Ø Global timestepping

Ø Every particle is evolved with the same (minimum) dt

Ø Excellent energy conservation

Ø Simple to implement

Ø Individual timestepping

Ø Particles are evolved as per their own dt

Ø Weaker energy conservation

Ø Considerably increases computational efficiency for most projects

dt = C
h

vsig



Sink particles
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Ø If gas density becomes too high, then simulation becomes prohibitively expensive to run

Ø Replace dense regions with ‘sink’ particles (Bate, Bonnell & Price 1995)

Ø See star cluster simulation, where each sink represents one star
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Sink particles
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Ø If gas density becomes too high, then simulation becomes prohibitively expensive to run

Ø Replace dense regions with ‘sink’ particles (Bate, Bonnell & Price 1995)

Ø Sinks have a fixed (parametrised) radius; in this figure, 6.67au

Ø Sinks accrete gas, thus increase their mass

Ø Sinks feel only gravity: there are no pressure forces and no magnetic forces

Ø Sinks act like an inner boundary condition; information is lost near and within the sink 

radius



Gravity
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Ø Momentum equations including gravity:

Ø Poisson’s equation is non-trivial to solve

Ø Rather, for each particle, we sum the forces from all other particles

Ø This is done using a tree, where the particles are divided into ‘leaf-nodes’ of ~10 particles:

dv

dt
= �

1

ρ
rP �rΦ

dt
�

ρ
r ·

r
2
Φ = 4πGρ

Price+ (2018)



Gravity: Short-range forces
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Ø For a given particle, we 

perform an N2 calculation over 

all particles within its leaf-node, 

and all leaf-node within 2h

Ø Not all of these particles are 

guaranteed to be within 2h

Ø If within 2h, particle 

contributes a softened 

gravitational force using a 

kernel

Ø If outside of 2h, particle 

contributes 1/r2

gravitational force

Price+ (2018)



Gravity: Long-range forces
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Ø For particles in remaining 

leaves, leaves are combined by 

size and distance from the 

target particle

Ø Each combination of leaves 

should have a similar angular 

size as viewed from the target 

particle

Ø Each combined leaf makes a 

single contribution to the 

gravitational force, using total 

leaf mass and centre of mass 

location

Price+ (2018)



Gravity
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Ø For efficiency, split gravity into three components:

Ø Inside red circle: softened force since neighbour is within 2h

Ø Inside blue square: 1/r2 force since this represents all leaf-nodes within 2h of the particle

Ø Each yellow rectangle is a combined group of leaves; each makes a single contribution



Gravity + sinks
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Ø Sink particles (generally) do not exist in the tree

Ø Sink-sink & sink-gas gravity are treated as only short range & mid-range

Ø At every step, this leads to minimum Nsink
2 + NgasNsink gravity calculations

Ø If sinks have formed a tight binary (or higher order system), then small timesteps are required 

to resolve the binary orbit. Sink-sink & sink-gas gravity only are calculated on these very 

short timesteps



Continuum Magnetohydrodynamic Equations
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Ø Continuum Equations:

Ø Continuity Equation

Ø Equation of Motion

Ø Induction Equation

Ø Energy Equation

Ø Equation of state (e.g.)

dρ

dt
= �ρr · v

dv

dt
= �

1

ρ
r

✓

P +
B2

2µ0

◆

I �
1

µ0

BB

�

dB

dt
= r⇥ (v ⇥B) = (B ·r)v �B (r · v)

du

dt
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P

ρ
r · v

P = (γ � 1) ρu



Continuum Magnetohydrodynamic Equations

39

Ø Continuum Equations:

Ø Continuity Equation

Ø Equation of Motion

Ø Induction Equation

Ø Energy Equation

Ø Equation of state (e.g.) 

dρ

dt
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= �
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ρ
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ρ
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Discrete Magnetohydrodynamic Equations
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Ø Discrete Equations:

Ø Density Equation

Ø Equation of Motion

Ø Induction Equation

Ø Energy Equation

Ø MHD stress tensor

Ø Note: In all SPMHD equations, B has been normalised such that B = B/
p
µ0
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Ø Magnetic fields are numerically difficult

Ø Require artificial resistivity (see Wurster, Bate, Price & Tricco 2017)

Ø Require enforcement of 

Ø Analytically                  , but this is not numerically guaranteed

Ø To enforce                  , we include ‘divergence cleaning’ (Tricco, Price & Bate 2016)

Ø In MHD simulations, track             to ensure it remains small (see also Dobbs & Wurster 2021)

Ø MHD simulations are often slower and more care is generally needed than purely 

hydrodynamic simulations

h |r ·B|

|B|

Magnetic Fields
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r ·B = 0
r ·B = 0

r ·B = 0



Ø Dust is a pressure-less fluid that interacts with itself and gas via gravity and drag only

Ø For large dust grains, two-fluid approach is optimal

Ø Dust and gas are each represented using a different set of particles

Ø Dust and gas particles can be accreted onto sink particles

Laibe & Price (2012); Lagrangian formalism so                                                                                                Dipierro+ (2015)

Dust

42

∂ρg

∂t
+ ∇ ·

(

ρgvg

)

= 0,

∂ρd

∂t
+ ∇ · (ρdvd) = 0,

ρg

(

∂vg

∂t
+ vg · ∇vg

)

= ρg f + K(vd − vg) − ∇Pg,

ρd

(

∂vd

∂t
+ vd · ∇vd

)

= ρd f − K(vd − vg),

D

Dt
⌘

∂

∂t



dρ

dt
= −ρ(∇.v), (9)

dǫ

dt
= −

1

ρ
∇ · [ǫ (1 − ǫ) ρ"v] , (10)

dv

dt
= (1 − ǫ) f g + ǫ f d −

1

ρ
∇ · [ǫ (1 − ǫ) ρ"v"v] + f , (11)

d"v

dt
= −

"v

ts
+ ( f d − f g) − ("v · ∇)v +

1

2
∇

[

(2ǫ − 1) "v
2
]

,

(12)

Ø Dust is a pressure-less fluid that interacts with itself and gas via gravity and drag only

Ø For small dust grains, one-fluid approach is optimal

Ø An evolving fraction of each particle is dust and the remaining fraction is gas

Ø These hybrid particles can be accreted onto sink particles

Laibe & Price (2014); Lagrangian formalism so                                                                             Tricco, Price & Laibe (2017)

Dust

43D

Dt
⌘

∂
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Boundary Conditions
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Ø Boundaries are optional in SPH

Ø Particles are free to go where they physics takes them!

Ø e.g. collapse of a sphere

Ø e.g. evolution of a turbulent hydrodynamic sphere (Bate 2012)

Ø e.g. galaxy merger simulation (Wurster & Thacker 2013a,b)

t=108400 yrs



Boundary Conditions
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Ø Boundaries are not optional when evolving magnetic fields!

Ø Cannot coherently evolve the ‘end’ of a magnetic field line

Ø Most common magnetic boundary: ‘sphere-in-box’-style with periodic boundaries

(e.g. Wurster+ 2016,2017,2018abcd,2019,2020ab,2021)

Ø Embed sphere in low density medium (e.g. with density ratio 30:1)

Ø Thread magnetic field throughout the entire domain

Ø Use periodic boundaries at the edge of the box, where magnetohydrodynamic forces are 

periodic but gravity is not
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Summary to date
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Ø When developing / modifying code:

Ø Convert the continuum equations into discrete equations

Ø Account for variable smoothing lengths

Ø Careful with your choice of discretisation for derivatives

Ø Apply artificial terms as required

Ø generally only two required for hydrodynamics

Ø a third is required for magnetohydrodynamics

Ø Additional physical processes can be modelled via using SPH (e.g.)

Ø gravity

Ø very dense regions via sink particles

Ø magnetic fields (required cleaning, artificial resistivity, & boundaries)

Ø dust



Coding Words of Wisdom
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James Wurster

jhw5@st-andrews.ac.uk

Ø Always comment your code!

Ø Never hard-code parameters, even when testing!

(at the very least, define all parameters at the top of the 

file for clarity, consistency, and ease of ability to change)


