Resolving numerical star formation: A cautionary tale

James Wurster

Collaborator: Matthew Bate

SPHERIC 2019, Exeter, United Kingdom. June 27, 2019

Numerical star formation

Ideal MHD, μ_0 =5	Time: 244.47 yrs	Non-ideal MHD, μ_0 =	:5, -B _z , ζ _{cr} =10 ⁻¹⁷ s ⁻¹	Time: 244.47 yrs	Code sphNG
					> M_4 Cubic spline kernel
					Fully compressible SPH
					Sphere-in-box setup
					with periodic boundary conditions
					Evolved density over
					17 orders of magnitude
					Includes:
					• adaptive <i>h</i>
					• individual timesteps
					• radiation non-ideal
					magnetohydrodynamics
video available: https://w	ww.youtube.c	om/watch?v=c	luaA1bu2wf8&t=	1s	
100 ^H au			100 au		
Wurster, Bate & Price (2018)		i = 90°		Images at similar $ ho_{max}$	
-2 0	log column de	nsity [g/cm²]	4	6	

Wurster, Bate & Price (2018,ac)

Music: Jo-Anne Wurster

Global Evolution

- \triangleright ρ ~10⁻¹² g cm⁻³: Beginning of first core phase
- $\triangleright \rho \sim 10^{-8} \text{ g cm}^{-3}$: End of first core phase
- $\triangleright \rho \sim 10^{-4} \text{ g cm}^{-3}$: Birth of protostar
- > Evolution diverges around $\rho \sim 10^{-12}$ g cm⁻³ due to the different physical processes

Magnetohydrodynamics

Induction equation (continuum):

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\boldsymbol{B}}{\rho} \right) = \left(\frac{\boldsymbol{B}}{\rho} \cdot \boldsymbol{\nabla} \right) \boldsymbol{v}$$

➢ Induction equation (discretised):

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{B_a^i}{\rho_a}\right) = -\frac{1}{\Omega_a \rho_a^2} \sum_b m_b v_{ab}^i B_a^j \nabla_a^j W_{ab} \left(h_a\right)$$

Artificial resistivity (from Price, Würster + 2018):

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{B_a^i}{\rho_a} \right) \Big|_{\mathrm{art}} = \frac{1}{\Omega_a \rho_a^2} \sum_b m_b v_{\mathrm{sig},ab} B_{ab}^i \hat{r}_{ab}^j \nabla_a^j W_{ab} \left(h_a \right)$$

Density (discretised):

$$\rho_a = \sum m_b W_b; \qquad h_a = 1.2 \left(\frac{m_a}{\rho_a}\right)^{\frac{1}{3}}$$

Orszag-Tang vortex: Resolution

> Main features are visible at all resolutions, but better defined for higher resolution

Price, Wurster + (2018)

Global Evolution: Resolution

First hydrostatic core: end stage

Stellar core: Resolution

Computational expense

Conclusions

Collapse time and magnetic field strengths are governed by physical processes

>Evolutions diverge during first hydrostatic core phase

Decreasing resolution permits faster collapses; relative collapse time is is preserved
 During first hydrostatic core:

>Density structures are qualitatively similar

>Magnetic field structure resolution-dependent, especially nB_{+z}

>At stellar birth:

Density and magnetic field structure are resolution-dependent

>Performing very high resolution simulations can quickly become prohibitively expensive

Conference proceedings: https://arxiv.org/abs/1906.12276

James Wurster & Matthew R. Bate SPHERIC 2019, Exeter, United Kingdom: June 27, 2019

