## The role of non-ideal magnetohydrodynamics in the formation of stars and their discs

#### James Wurster (he/him)

Collaborators: Matthew Bate, Daniel Price & Ian Bonnell

Applied Mathematics | School of Mathematics & Statistics | University of St Andrews November 4, 2022

erc









•



#### Star formation: From the beginning



Orion Molecular Cloud. (image credit: Drudis & Goldman via APOD)

#### Star formation: From the beginning

Pillars of Creation: Hubble Space Telescope [visible] vs JWST [near IR] vs JWST [mid-IR]. (image credit: webbtelescope.org)

#### Star formation: Stellar nurseries



Taurus Molecular Cloud (Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin)

Taurus Molecular Cloud:  $H_2$  column density map with positions of young stars (Goldsmith et. al., 2008)

Magnetic field morphology around L1448 IRS 2 (Kwon+ 2019)



#### **Cluster Formation: Effect of MHD**



#### Magnetic fields in star forming regions

Large-scale magnetic fields are perpendicular to dense structures
Large-scale magnetic fields are parallel to low-density structures





Planck Collaboration (2016)

## The second

#### Magnetic fields in star forming regions

| ٠  | ٠        | ٠    | ٠  | ¥      | ¥    | ¥      | Ļ   | Ļ   | 4        | 4   |     | ļ   | Ļ          | ł       | ¥  | ¥                 | ł   | Ļ            | ł   | ÷            | ÷          | ÷               | ÷                     | ÷                             | ¥            | ÷    | ¥ | ÷ | ÷  | ٠  | ٠   | ٠      | ٠   | ٠        | ٠    | +   | +   | +   | • |
|----|----------|------|----|--------|------|--------|-----|-----|----------|-----|-----|-----|------------|---------|----|-------------------|-----|--------------|-----|--------------|------------|-----------------|-----------------------|-------------------------------|--------------|------|---|---|----|----|-----|--------|-----|----------|------|-----|-----|-----|---|
| ٠  | ٠        | ٠    | ٠  | ÷      | ÷    | ¥      | ¥   | ¥   | ¥        | 6   | 1   | 1   | 1          | Ļ       | Ļ  | 4                 | 4   | Ļ            | ¥   | ÷            | ¥          | ÷               | ¥                     | ¥                             | ÷            | ÷    | ÷ | ÷ | ÷  | ÷  | •   | ٠      | ٠   | ٠        | +    | +   | +   | +   | ÷ |
| ٠  | •        | ٠    | •  | ÷      | ÷    | ÷      | ÷   | ¥   | ¥        | Ļ   | 1   | 1   | 1          | 1       | 7  | 1                 | 4   | Ļ            | ¥   | ÷            | ÷          | ÷               | ¥                     | ÷                             | ÷            | ÷    | ÷ | ÷ | ÷  | ÷  | •   | ٠      | ٠   | •        | +    | +   | +   | +   | ÷ |
| •  | •        | •    | •  | ÷      | ÷    | ÷      | ÷   | ÷   | Ļ        | Ļ   | 1   | 1   | 1          | 1       | 1  | 1                 | 1   | 4            | Ļ   | Ļ            | ÷          | ÷               | ÷                     | ÷                             | ÷            | ÷    | ÷ | ÷ | ÷  | ÷  | •   | •      | •   | •        |      |     | +   | +   | ÷ |
| •  | •        | ÷    | •  | •      | ÷    | ÷      | ÷   | 4   | Ļ        | Ţ   | 1   | 1   | 1          | 1       | 1  | 1                 | -   | 1            | 1   | 4            | Ļ          | Ļ               | ÷                     | Ļ                             | ÷            | ÷    | ÷ | Ļ | ÷  | ÷  |     | ÷      | ÷   |          |      |     |     |     | * |
| •  | •        | •    |    |        | 4    | į.     | 1   | 1   | 1        | 1   | j   | 1   | /          | 1       | 1  | ~                 | -   | 1            | j   | 1            | 1          | 1               | 1                     | 1                             | 4            | 1    | 1 | 1 | 1  | 4  |     |        |     | 4        |      |     |     | 1   | 1 |
|    | <u>.</u> | ÷.   | ÷. | Ţ.     | ,    | Ì      | Ì   | Ţ   | ,        | ,   | ,   | •   | */         | $\cdot$ |    |                   | -   | -            |     | ,            | 1          | 1               | Ì                     | Ì                             | Ì            | Ì    | ì | 1 | 1  | 1  | ġ.  | 4      | 4   | 2        |      | 1   | 1   | ,   | , |
| ż  | ÷.       | ÷.   |    | Ţ.     | Ţ    | ,<br>, | ,   | ,   | ,        | •   | *   | 4   | */         | <br>    | 1  |                   |     | 2            |     |              | ,          | ,               | ,                     | ,                             | ,            | ,    | , | , | ,  | ,  |     |        | Ţ.  | ,        | ,    | ,   | ,   | ,   | 1 |
| ÷. | Ľ.       | Ľ    | Ĭ. | ,      | Ţ,   | •      | •   | *   | *        | 4   | 4   | 4   | 4          | 4       | ¥. |                   |     |              |     |              | ۴          | *               | *                     | •                             | •            | *    | * | • |    |    |     | ,<br>, |     | ,        | ,    | ,   | •   | *   | 4 |
| *  | *        | *    | ٠  | *      | *    | *      | *   | *   | 4        | 4   | 4   | Į,  | 4          | 4/      | X  | //                |     |              |     | *            | ¥.         | ¥.,             | 1                     | , ¥                           | *            | *    | * | * | *  | *  | *   |        | *   | *        | 4    |     | 4   | 4   | + |
| *  | *        | *    | *  | *      | ÷    | ¥      | +   | 4   | 4        | 4   | 4   | 4,  | •          | 1       |    | $\langle \rangle$ |     |              |     | *            |            | ×               |                       | *                             | 4            | 4    | ¥ | ¥ | *  | *  | *   | ¥      | 4   | 4        | 4    |     | ł   | ÷   | ł |
| ٠  | +        | *    | *  | ¥      | ÷    | ¥      | ÷   | ¥   | Ļ        | 4   | 4   | 4   |            | 1,      |    | R                 | X   | $\mathbb{N}$ | 2   | >            | A          | 1               | 1                     | 1                             | 1            | 1    | ¥ | * | *  | ¥  | ¥   | ł      | Ļ   | Ļ        | Ļ    | ł   | Ļ   | +   | ÷ |
| ٠  | 4        | ٠    | ¥  | *      | ÷    | ¥      | +   | ¥   | Ļ        | 4   | Į,  | 4   | 4          |         | 1  | X                 |     |              | A   | $\checkmark$ | 1          | 1               | 1                     | 1                             | 1            | 4    | 4 | * | ¥  | ¥  | ≠,  | Ļ      | 1   | ۰Ļ       | Ļ    | 1   | ÷   | +   | ٠ |
| ٠  | •        | •    | ¥  | ¥      | ¥    | ÷      | ¥   | Ļ   | Ļ        | Į   |     | 1   | 1          | ļ       | /  | L                 |     | 7            | 71) | ~            | 1          | 1               | 1                     | 1                             | 1            | 1    | * | 4 | 4  | ¥  | ¥   | X      |     | 1        | ¥    | ÷   | ÷   | +   | ٠ |
| ٠  | •        | •    | ¥  | ¥      |      | 4      | ¥   | Ļ   | Ļ        | ļ   |     | I   | Ţ          |         | 1  | 4                 | ×   | X            |     | •            | - 6        | 1               | , 1                   | 1                             | 1            | 1    | 4 | 4 | 1  | 4  | Ļ   |        |     | 4        | ÷    | ÷   | ٠   | ٠   | ٠ |
| ٠  | ¥        | 4    | ¥  | ¥      | ¥    | ¥      | Ļ   | Ļ   | Ļ        | Ļ   |     | Ţ   | Ţ          | Ţ       | X  |                   | +/  | $^{\prime}$  | V   |              | 1          | .//             | X                     | 1                             | 1            | 1    | 1 | 1 | 1  | 4  | Ļ   | Ţ      | Ļ   | ¥        | ÷    | +   | +   | ٠   | ٠ |
| ٠  | ÷        | •    |    |        | ¥    | ¥      | Ļ   | Ļ   | Ţ        | Ļ   | 1   | Ţ   | Í          | ľ       |    | - 💊               | -   | 16           | ~   |              | -          | H.              | X                     | Λ                             | 1            | 1    | / | 1 | 1  | 4  | Ţ   | Ļ      | ¥   | •        | ٠    | •   | ٠   | ٠   | ٠ |
| ٠  | ÷        | ÷    | ÷  | ÷      | ÷    | 4      | Ļ   | Ļ   | 1        | Ţ   | Ļ   | Ţ   | 1          | 1       | 1  | ×.                | *   | 1            | +   | >            | $\searrow$ | X               | Å                     | $\mathbf{\tilde{\mathbf{A}}}$ | /            |      |   | / | 1  | Ţ  | Ļ   | ¥      | ÷   | ٠        | •    | •   | ٠   | •   | ٠ |
| ٠  | •        | •    | •  | ÷      | ÷    | Ļ      | Ţ   | Ţ   | Ì        | i   | 1   | 1   | 1          | N.      | N. | ¥                 |     | 1            | 1   | /            | //         | *               | *                     | X                             | <u> </u>     | ~ /* |   | 4 | 4  | 4  | ÷   | •      | •   | •        | •    | •   | •   | •   | • |
| •  | •        | •    | •  | ÷      | ÷    | 1      | 1   | 1   | Ť        | Ì   | 1   | 1   | 7          | 7       | Ň  | 1                 | 1   | Ĩ            | 1   |              | 1          | 4               | 4                     | $\mathbf{V}$                  | 4            | 4    | 1 | 2 | *  | •  | •   | •      | •   | •        |      |     |     |     | • |
| •  |          |      |    | 4      | 1    | Ì      | Ì   | Ĩ   | Ĭ.       | I.  | 1   | ľ   | 7          | Ń       | 7  | 1                 | 1   | Ť            | 1   |              | 1          | $I_1^{\bullet}$ | $\int_{-1}^{\bullet}$ | <b>`</b> ``                   | $\mathbf{V}$ |      | Í | 1 |    |    | •   | •      | •   | •        |      |     |     |     |   |
| ÷. | ÷.       | Ì.   | Ì. | ,<br>, | ,    | ,      | ,   | ,   | , i      | Ň   | Ň   | Ň   | Ň          | ι.      | Ľ  | ,                 | , i | •<br>1       | 1   | Ĭ            | 1          | ,               | , i                   | Ţ                             | X            | ,    | • | , | i. | Ì. |     | ÷.     | ÷.  | <u>.</u> |      |     |     |     |   |
|    |          |      |    |        |      |        |     | •   | - V<br>L |     |     |     |            |         |    |                   |     | •            |     |              |            |                 |                       |                               |              |      | • | • |    |    |     |        |     |          |      |     |     |     |   |
|    |          |      |    |        |      |        |     |     |          |     |     | *   |            |         |    |                   |     |              |     |              |            | •               |                       |                               |              |      |   | • |    |    |     |        |     |          |      |     |     |     |   |
| •  | •        | •    | •  | •      | •    | +      | •   | +   | •        | •   | •   | ł   | ł          | •       | •  | •                 | +   | •            | •   | •            | •          | •               | •                     | •                             | •            | •    | • | • | •  | -4 | •   |        | -2  | •        |      | Ø   | .7  | 2-  |   |
| •  | Data     | a fr | om | Wı     | urst | er,    | Bat | e & | c Pı     | ice | (20 | )19 | ) <b>•</b> | ł       | ł  | ÷                 | ł   | ł            | ł   | ł            | ŧ          | ŧ               | +                     | +                             | •            | •    | • | ł | +0 | gc | οlι | Im     | n•d | ens      | sity | ŀg/ | 'em | 14] | ٠ |

#### Magnetic fields in star forming regions



Data from Wurster, Bate & Price (2019)

#### Magnetic fields in star forming regions: Ionisation fraction



Data from Wurster, Bate & Price (2019)

Ideal magnetohydrodynamics



Ideal magnetohydrodynamics



Price & Bate (2007)

Ideal magnetohydrodynamics





≻Partially ionised plasma:



➢Non-zero resistivity & conductivity

≻Ions, electrons & neutrals behaviour is environment-dependent











### **Non-ideal magnetohydrodynamics**

- Strong field, initially vertical magnetic field
- Large scale structure



### **Non-ideal magnetohydrodynamics**

- Strong field, initially vertical magnetic field
- Small scale structure



### **Non-ideal magnetohydrodynamics**

- Strong field, initially vertical magnetic field
- Small scale structure



### **Non-ideal magnetohydrodynamics: Hall effect**

>Depending on the relative orientation of L & B, the Hall-induced rotation will contribute to or detract from the initial rotation



19

#### **Continuum Magnetohydrodynamic Equations** $(\bullet)_{i}$

Continuum equations:

$$\frac{d\rho}{dt} = -\rho\nabla \cdot \boldsymbol{v}$$

$$\frac{d\rho}{dt} = -\rho\nabla \cdot \boldsymbol{v}$$

$$\frac{d}{dt} = -\frac{1}{\rho}\nabla \cdot \left[\left(p + \frac{B^2}{2}\right)I - \boldsymbol{B}\boldsymbol{B}\right] - \nabla\Phi + \frac{\kappa F}{c}$$

$$\approx \text{Radiation}$$

$$\approx \text{Magnetic fields}$$

$$\approx \text{Kinematics}$$

$$\rho \frac{d}{dt} \left(\frac{\boldsymbol{B}}{\rho}\right) = (\boldsymbol{B} \cdot \nabla) \boldsymbol{v} + \frac{d\boldsymbol{B}}{dt}\Big|_{\text{non-ideal}}$$

$$\rho \frac{d}{dt} \left(\frac{E}{\rho}\right) = -\nabla \cdot \boldsymbol{F} - \nabla \boldsymbol{v}: \boldsymbol{P} + 4\pi\kappa\rho B_{\text{P}} - c\kappa\rho E$$

$$\rho \frac{du}{dt} = -p\nabla \cdot \boldsymbol{v} - 4\pi\kappa\rho B_{\text{P}} + c\kappa\rho E + \rho \frac{du}{dt}\Big|_{\text{non-ideal}}$$

 $\nabla^2 \Phi = 4\pi G \rho$ 

20

✤ Gas

✤ Radiation

✤ Kinematics

✤ Magnetic fields

## **Continuum Magnetohydrodynamic Equations**

> Non-ideal MHD terms hide considerable micro-physics:

$$\frac{\mathrm{d}\boldsymbol{B}}{\mathrm{d}t}\Big|_{\mathrm{non-ideal}} = -\nabla \times [\eta_{\mathrm{OR}} (\nabla \times \boldsymbol{B})] \\ -\nabla \times [\eta_{\mathrm{HE}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{\hat{B}}] \\ +\nabla \times \{\eta_{\mathrm{AD}} [(\nabla \times \boldsymbol{B}) \times \boldsymbol{\hat{B}}] \times \boldsymbol{\hat{B}}\}$$

$$\frac{\mathrm{d}u}{\mathrm{d}t}_{\mathrm{non-ideal}} = \frac{\eta_{\mathrm{OR}}}{\rho} |\nabla \times \boldsymbol{B}|^{2} + \frac{\eta_{\mathrm{AD}}}{\rho} \left\{ |\nabla \times \boldsymbol{B}|^{2} - \left[ (\nabla \times \boldsymbol{B}) \cdot \hat{\boldsymbol{B}} \right]^{2} \right\}$$

#### ••• Magnetic fields in star forming regions: Non-ideal Effects



Values dependent on microphysics: Grain size, ionised species, cosmic ray ionisation rate
 Solid: NICIL v2.1; dotted: NICIL v1.2.6.
 Wurster (2021)

#### ••• Magnetic fields in star forming regions: Non-ideal Effects



- Cyan lines is typical star forming tracks
- Values dependent on microphysics: Grain size, ionised species, cosmic ray ionisation rate 23 Adapted from Wardle (2007); constructed using NICIL v2.0 (Wurster, 2016)

## X

#### Cluster Formation: Effect of Non-ideal MHD



# The second

#### **Cluster Formation: Star forming regions**

Star forming regions have a wide range of initial magnetic field strengths, that are approximately independent of the global environment



Wurster, Bate & Price (2019)



#### **Cluster Formation: Stellar Mass**

#### ≻No trend when stars form

Excluding N03 & I03, there is more mass in stars with weaker initial magnetic field strengths



Wurster, Bate & Price (2019)



#### **Cluster Formation: Protostellar discs**

Large protostellar discs form in *all* our models



#### **Cluster Formation: Protostellar discs**

Large protostellar discs form in *all* our models



Wurster, Bate & Price (2019)

Discs in Perseus (Tobin+2018)

## The second

#### **Cluster Formation: Protostellar discs**

Stellar & disc hierarchy is continuously evolving
 There exist circumstellar discs, circumbinary discs, and circumsystem discs
 Left: O = circumstellar disc; x = circumbinary disc; △ (□)= circumsystem discs about 3 (4) stars





#### **Cluster Formation: Protostellar discs**

Large protostellar discs form in *all* our models



#### Star formation: From the beginning



Disc formation is a natural consequence of star formation

Larson (1969); Illustration by Y. Tsukamoto Background: Orion Molecular Cloud. (image credit: Drudis & Goldman via APOD)

31

Relevant processes:

✤ Gas

✤ Dust

✤ Etc...

Radiation

Magnetic fields

Kinematics: Rotation

Kinematics: Turbulence



#### Formation of a low-mass star



Available at: https://youtu.be/2SQxgXbdJyg

Wurster, Bate & Price (2018c)

Music: Jo-Anne<sup>32</sup> Wurster

#### Rotationally supported discs



Discs form during the first hydrostatic core phase
 Similar disc structure obtained by Tsukamoto+ (2015a) with ±B<sub>z</sub>

Wurster, Bate & Bonnell (2021); Wurster, Bate & Price (2018a,c)

#### **Rotationally supported discs**



Discs form during the first hydrostatic core phase
 Similar disc structure obtained by Tsukamoto+ (2015a) with ±B<sub>z</sub>

Wurster, Bate & Bonnell (2021); Wurster, Bate & Price (2018a,c); inset: Tsukamoto+ (2017)





- Multiple conclusions in the literature regarding disc formation with Ohmic resistivity and/or ambipolar diffusion
- Likely possible to form small 1-5au discs in the long term with only Ohmic and/or ambipolar (Dapp and Basu 2010, Machida+ 2011, Dapp+ 2012, Tomida+ 2015, Tsukamoto+ 2015a, Masson+ 2016)
- Hennebelle et al. (2016) predicts 18au discs for ambipolar diffusion only
- Open question: When do discs form?

#### Non-ideal magnetohydrodynamics: Components

➤Despite the apparent simplified phase space, many processes are important simultaneously, specifically the Hall effect & ambipolar diffusion





Wurster (2021)

#### Non-ideal MHD Components: Rotationally supported discs



Discs form during the first hydrostatic core phase
 Similar disc structure obtained by Tsukamoto+ (2015a) with ±B<sub>z</sub>

Wurster, Bate & Bonnell (2021); Wurster, Bate & Price (2018a,c)

#### Non-ideal MHD Components: Rotationally supported discs



≻Ohmic resistivity & ambiploar diffusion will form small discs later

Wurster, Bate & Bonnell (2021); Wurster, Bate & Price (2018a,c); see also Wurster, Price & Bate (2016)

|v<sub>⊕</sub> [km/s]

|v<sub>@</sub> [km/s]|

#### Non-ideal MHD Components: Angular momentum

>All non-ideal components, except the Hall effect with  $+B_z$  increase the angular momentum of the first core, thus promote disc formation



#### Non-ideal MHD Components: Magnetic field evolution



Magnetic walls (Tassis & Mouschovias, 2005) form in non-ideal MHD models
 Ohmic resistivity & ambipolar diffusion cause the formation of magnetic walls
 The Hall effect creates dispersion that creates spirals
 Wurster, Bate & Bonnell (2021); Wurster, Bate & Price (2018d)

og |B| [G]

#### Non-ideal MHD Components: Magnetic field evolution

Magnetic walls (Tassis & Mouschovias, 2005) form in non-ideal MHD models
 Walls are resolution dependent; higher resolutions resolve faster whistler waves



Wurster, Bate, Price & Bonnell (2022)

### Conclusions

Star forming molecular clouds are only weakly ionised
 Ideal MHD is a poor description

- Star cluster formation:
  - ➢ No trends amongst most of our parameters
  - Discs form in all of our models, suggesting that the magnetic braking catastrophe is a result of poor initial conditions

≻Isolated, low-mass star formation:

- $\blacktriangleright$  Large discs only form in the hydrodynamic and non-ideal MHD model with  $-B_z$ .
  - *this resolved the magnetic braking catastrophe*
- > All non-ideal MHD terms play a role, with AD & HE the most significant
- > The Hall effect is the primary driver for transporting angular momentum
- Diffusive / dispersive terms create walls / spirals in the magnetic field

