Star formation with magnetohydrodynamics: What we learn frem computer simulations

Dr James Wurster

Primary collaborators: Matthew Bate, Daniel Price \& Ian Bonnell

St Andrews Interdisciplinary Science Conference (SISCO)
February 6, 2022

Importance of stars: The big picture

Importance of stars: Masses

$>$ Main classes of stellar masses

* Massive stars $\left(\mathrm{M}>8 \mathrm{M}_{\text {sun }}\right)$

Low-mass stars $\left(0.08 \mathrm{M}_{\text {sun }}<\mathrm{M}\right.$ \& $\left.\mathrm{M}<8 \mathrm{M}_{\text {sun }}\right)$

* Brown Dwarfs ($\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}$)

Importance of stars: Masses

$>$ Main classes of stellar masses

* Massive stars ($\mathrm{M}>8 \mathrm{M}_{\text {sun }}$)

Low-mass stars $\left(0.08 \mathrm{M}_{\text {sun }}<\mathrm{M}\right.$ \& $\left.\mathrm{M}<8 \mathrm{M}_{\text {sun }}\right)$

* Brown Dwarfs ($\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}$)

Importance of stars: Masses

$>$ Main classes of stellar masses

* Massive stars ($\mathrm{M}>8 \mathrm{M}_{\text {sun }}$)
* Low-mass stars $\left(0.08 \mathrm{M}_{\text {sun }}<\mathrm{M}\right.$ \& $\left.\mathrm{M}<8 \mathrm{M}_{\text {sun }}\right)$
* Brown Dwarfs ($\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}$)

$>$ Evolutionary path is determined by its mass

Importance of stars: Masses

$>$ Main classes of stellar masses

* Massive stars ($\mathrm{M}>8 \mathrm{M}_{\text {sun }}$)

Low-mass stars $\left(0.08 \mathrm{M}_{\text {sun }}<\mathrm{M}\right.$ \& $\left.\quad \mathrm{M}<8 \mathrm{M}_{\text {sun }}\right)$

* Brown Dwarfs ($\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}$)

$>$ Evolutionary path is determined by its mass

Importance of stars: Masses

STELLAR LIFE CYCLE

$>$ Evolutionary path is determined by its birth mass

Importance of stars: Masses

$>$ Evolutionary path is determined by its birth mass

Importance of stars: Masses

$>$ Evolutionary path is determined by its birth mass

Importance of stars: Masses

$>$ Initial mass function (IMF) of NCG 3603

Low mass stars are much more plentiful than high-mass stars

Left: Bonnell, Larson, Zinnecker (2007)

Importance of Low-stars: Outflows \& Discs

Top left: Large scale Herbig-Haro jet driven by a proto-brown dwarf (Riaz et. al., 2017) Bottom left: CO outflows from low-mass stars with 1pc of Sgr A* (Yusef-Zadeh et. al., 2017)

Observational vs. theoretical astronomy

VS.

Observational vs. theoretical astronomy

$>$ HL Tau: Observed with ALMA vs numerically produced

$>$ Initial Mass Function: Observed (lines) vs numerical models

Observational vs. theoretical astronomy

$>$ Star formation is a long process, lasting millions of years
$>$ Observationally, we take 'snap-shots' in time, and piece them together to form a star formation theory

Star forming region Pillars of Creation
(Hubble Space Telescope)

Protoplanetary disc HL Tau
(ALMA Partnership 2015)

Planetary system HR 8799
(Jason Wang \& Christian Marois)

Observational vs. theoretical astronomy

$>$ Star formation is a long process, lasting millions of years
$>$ Observationally, we take 'snap-shots' in time, and piece them together to form a star formation theory
$>$ Numerical simulations can self-consistently model long periods of time to follow the evolution of a single system

Star forming region
(Wurster+2019)

Protoplanetary disc
(Wurster+2018)

Planetary system
(Veronesi+2019)

Star formation: From the beginning

How is astar formed?

Orion Molecular Cloud. (image credit: Drudis \& Goldman via APOD)

Star formation: From the beginning

Gravitational collapse phase

 $\checkmark$$\xrightarrow{\infty}$

Mass accretion phase

Class 0-I
Class II-III

Molecular cloud core First core formation Protostar formation/Class 0

Isothermal collapse

Second collapse after $\mathrm{T}_{\text {core }}>2000 \mathrm{~K}$

Star formation: From the beginning

Relevant processes:

* Gas
\& Dust
* Radiation
* Magnetic fields
\& Kinematics: Rotation
Kinematics: Turbulence
\& Etc...

Continuum Magnetohydrodynamic Equations

$>$ Continuum equations to be solved:

$$
\begin{aligned}
& \frac{\mathrm{d} \rho}{\mathrm{~d} t}=-\rho \nabla \cdot \boldsymbol{v} \\
& \frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}=-\frac{1}{\rho} \nabla \cdot\left[\left(p+\frac{B^{2}}{2}\right) I-\boldsymbol{B} \boldsymbol{B}\right]-\nabla \Phi+\frac{\kappa F}{c} \\
& \rho \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\boldsymbol{B}}{\rho}\right)=(\boldsymbol{B} \cdot \nabla) \boldsymbol{v}+\left.\frac{\mathrm{d} \boldsymbol{B}}{\mathrm{~d} t}\right|_{\text {non-ideal }} \\
& \rho \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{E}{\rho}\right)=-\nabla \cdot \boldsymbol{F}-\nabla \boldsymbol{v}: \boldsymbol{P}+4 \pi \kappa \rho B_{\mathrm{P}}-c \kappa \rho E \\
& \rho \frac{\mathrm{~d} u}{\mathrm{~d} t}=-p \nabla \cdot \boldsymbol{v}-4 \pi \kappa \rho B_{\mathrm{P}}+c \kappa \rho E+\left.\rho \frac{\mathrm{d} u}{\mathrm{~d} t}\right|_{\text {non-ideal }} \\
& \nabla^{2} \Phi=4 \pi G \rho
\end{aligned}
$$

Continuum Magnetohydrodynamic Equations

> Simplified Continuum Equations:
$>$ Continuity Equation

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}=-\rho \nabla \cdot \boldsymbol{v}
$$

$>$ Equation of Motion

$$
\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{dt}}=-\frac{1}{\rho} \nabla\left[\left(P+\frac{B^{2}}{2 \mu_{0}}\right) I-\frac{1}{\mu_{0}} \boldsymbol{B} \boldsymbol{B}\right]
$$

$>$ Induction Equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\boldsymbol{B}}{\rho}\right)=\left(\frac{\boldsymbol{B}}{\rho} \cdot \nabla\right) \boldsymbol{v}
$$

$>$ Energy Equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=-\frac{P}{\rho} \nabla \cdot \boldsymbol{v}
$$

$>$ Equation of state (e.g.) $P=(\gamma-1) \rho u$

Discrete Magnetohydrodynamic Equations

$>$ Discrete Equations:
$>$ Density Equation

$$
\rho_{a}=\sum_{b} m_{b} W_{a b}\left(h_{a}\right) ; \quad h_{a}=\eta\left(\frac{m_{a}}{\rho_{a}}\right)^{1 / 3}
$$

$>$ Equation of Motion

$$
\frac{\mathrm{d} v_{a}^{i}}{\mathrm{~d} t}=\sum_{b} m_{b}\left[\frac{S_{a}^{i j}}{\Omega_{a} \rho_{a}^{2}} \nabla_{a}^{j} W_{a b}\left(h_{a}\right)+\frac{S_{b}^{i j}}{\Omega_{b} \rho_{b}^{2}} \nabla_{a}^{j} W_{a b}\left(h_{b}\right)\right]
$$

$>$ Induction Equation
$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{B_{a}^{i}}{\rho_{a}}\right)=-\frac{1}{\Omega_{a} \rho_{a}^{2}} \sum_{b} m_{b} v_{a b}^{i} B_{a}^{j} \nabla_{a}^{j} W_{a b}\left(h_{a}\right)$
$>$ Energy Equation

$$
\frac{\mathrm{d} u_{a}}{\mathrm{~d} t}=\frac{P_{a}}{\Omega_{a} \rho_{a}^{2}} \sum_{b} m_{b} v_{a b}^{j} \nabla_{a}^{j} W_{a b}\left(h_{a}\right)
$$

$>$ MHD stress tensor

$$
S_{a}^{i j} \equiv-\left(P_{a}+\frac{1}{2 \mu_{0}} B_{a}^{2}\right) \delta^{i j}+\frac{1}{\mu_{0}} B_{a}^{i} B_{a}^{j}
$$

$>$ Note: In all SPMHD equations, \boldsymbol{B} has been normalised such that $\boldsymbol{B}=\boldsymbol{B} / \sqrt{\mu_{0}}$
$>$ Highly ionised plasma:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
$$

$>$ Zero resistivity \& infinite conductivity
$>$ Ions \& electrons are tied to the magnetic field
$>$ Neutral particles are tied to the magnetic field due to interactions with the ions \& electrons

\bullet - Ideal magnetohydrodynamics

$>$ Highly ionised plasma:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
$$

$>$ Zero resistivity \& infinite conductivity
$>$ Ions \& electrons are tied to the magnetic field
$>$ Neutral particles are tied to the magnetic field due to interactions with the ions \& electrons

$>$ Highly ionised plasma:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
$$

$>$ Zero resistivity \& infinite conductivity
$>$ Ions \& electrons are tied to the magnetic field
$>$ Neutral particles are tied to the magnetic field due to interactions with the ions \& electrons

Good approximation for (e.g.) stellar atmospheres: High ionisation fraction.
Bad approximation for molecular clouds: $n_{\mathrm{e}} / n \sim 10^{-14}$ (e.g. Nakano \& Umebayashi 1986)

Non-ideal magnetohydrodynamics
$>$ Partially ionised plasma:

$>$ Non-zero resistivity \& conductivity
$>$ Ions, electrons \& neutrals behaviour is environment-dependent

Non-ideal magnetohydrodynamics

$>$ Partially ionised plasma:

$>$ Non-zero resistivity \& conductivity

$>$ Ions, electrons \& neutrals behaviour is environment-dependent

Non-ideal magnetohydrodynamics

$>$ Partially ionised plasma and dust:

$>$ Non-zero resistivity \& conductivity
ρ
$>$ Ions, electrons \& neutrals behaviour is environment-dependent

Non-ideal magnetohydrodynamics

Ambipolar
(dissipative)
$>$ Values dependent on microphysics: Grain size, ionised species, cosmic ray ionisation rate Adapted from Wardle (2007);
\rightarrow Cyan lines is typical star forming tracks $\log (\rho)\left[\mathrm{g} \mathrm{cm}^{-3}\right]$

- Cyan lines is typical star

0

Non-ideal magnetohydrodynamics: Components

$\log \rho_{\mathrm{n}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$									
-20	-18	-16	-14	-12	-10	-8	-6	-4	-2
,			\cdots	+	,	+	+	+	

Adapted from Wardle (2007); constructed using NICIL v2.0 (Wurster 2016)

Bottom: Abundances using proxy chemical species (Wurster 2016)

Non-ideal magnetohydrodynamics: Components

Adapted from Wardle (2007); constructed using NICIL v2.0 (Wurster 2016)

Bottom: Abundances using proxy chemical species (Wurster 2016) Top: Abundances using a simplified chemical network (Wurster 2021)

Non-ideal magnetohydrodynamics: Components

Non-ideal MHD coefficients using simplified 35 reduced chemical network (Wurster 2021)

Non-ideal magnetohydrodynamics
$>$ Strong field, initially vertical magnetic field
> Large scale structure

\odot
 Non-ideal magnetohydrodynamics

$>$ Strong field, initially vertical magnetic field
> Small scale structure

Non-ideal magnetohydrodynamics

$>$ Strong field, initially vertical magnetic field
> Small scale structure

Formation of a low-mass star

Rotationally supported discs

$>$ Discs form in the hydrodynamics model and the non-ideal model with $-\mathrm{B}_{\mathrm{z}}$

$>$ Discs form during the first hydrostatic core phase in the non-ideal \& Hydro models Wurster, Bate \& Bonnell (2021); Wurster, Bate \& Price (2018a,c)

Rotationally supported discs

$>$ Discs form in the hydrodynamics model and the non-ideal model with $-\mathrm{B}_{\mathrm{z}}$

Other characteristics

$>$ Forming discs was the motivation, however, many other aspects of star formation can be investigated from these simulations, including

Counter-rotating envelopes

magnetic field geometry

Star formation: From the beginning

Stars do not porm in isolation

Star formation: Stellar nurseries

Taurus Molecular Cloud (Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2.
Acknowledgment: Davide De Martin)

Taurus Molecular Cloud: H_{2} column density map with positions of young stars (Goldsmith et. al., 2008)

Magnetic field morphology around L1448 IRS 2 (Kwon+ 2019)

Cluster Formation: Effect of non-ideal MHD

Cluster Formation: Magnetic field lines

$>$ Magnetic fields cross dense filaments approximately perpendicularly
$>$ Magnetic fields are approximately parallel to low-density filaments

Wurster, Bate \& Price (2019)

Cluster Formation: Magnetic field lines

$>$ Magnetic fields cross dense filaments approximately perpendicularly
$>$ Magnetic fields are approximately parallel to low-density filaments

Cluster Formation: Stellar Mass

$>$ No trend in IMF (although this is low-number statistics)
$>$ red is at common time of $1.45 \mathrm{t}_{\mathrm{ff}}$; blue is at end of the respective simulations

Cluster Formation: Stellar Mass

$>$ No trend in IMF (although this is low-number statistics)
$>$ red is at common time of $1.45 \mathrm{t}_{\mathrm{ff}}$; blue is at end of the respective simulations

Cluster Formation: Protostellar discs: Hydro

$>$ Large protostellar discs frequently form and interact

Cluster Formation: Protostellar discs

$>$ Large protostellar discs form in all our models

Cluster Formation: Protostellar discs

Large protostellar discs form in all our models

		.	\bigcirc	\bigcirc	\bigcirc	σ		4	$\%$	$\%$
-	,	,	.	-	-	*	-		.	
\bullet	\bullet		.		-	-				
120	.	.	\because	\bigcirc	\bigcirc	\cdots	.	-	.	${ }_{412}$ au

Conclusions

$>$ Astronomy is a synergy between observation and theory
$>$ Much astronomical theory is performed using numerical simulations
$>$ Star formation simulations requires a synergy between astrophysics, physics, mathematics, chemistry, and computer science
$>$ Star forming molecular clouds are only weakly ionised
$>$ Ideal MHD is a poor description
$>$ Non-ideal MHD is a reasonable description and can better reproduce observations
$>$ Stars form in clusters and generally group and form discs

