Modelling the birth of stars

Dr James Wurster

Collaborators:
October 9, 2020
Ian Bonnell, Matthew Bate \& Daniel Price
Dundee Astronomical Society

Importance of stars: Our introduction

Importance of stars: The big picture

Importance of stars: Masses

$>$ Main classes of stellar masses

* Massive stars $\left(\mathrm{M}>8 \mathrm{M}_{\text {sun }}\right)$

Low-mass stars $\left(0.08 \mathrm{M}_{\text {sun }}<\mathrm{M}\right.$ \& $\left.\mathrm{M}<8 \mathrm{M}_{\text {sun }}\right)$

* Brown Dwarfs ($\left.\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}\right)$

Importance of stars: Masses

$>$ Main classes of stellar masses

* Massive stars ($\mathrm{M}>8 \mathrm{M}_{\text {sun }}$)

Low-mass stars $\left(0.08 \mathrm{M}_{\text {sun }}<\mathrm{M}\right.$ \& $\left.\mathrm{M}<8 \mathrm{M}_{\text {sun }}\right)$

* Brown Dwarfs ($\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}$)

$>$ Evolutionary path is determined by its mass

Importance of stars：Numbers

National Aeronautics and Space Administration
 Kepler's planet candidates

些皆皆 $10,000 \mathrm{~K}$
Using NASA＇s planet－hunting Kepler spacecraft，astronomers have discovered 4，696 planet candidates orbiting $\mathbf{3 , 6 6 4}$ other suns in a search for Earth－size worlds．Launched in 2009，the Kepler space telescope monitored a rich star field for planetary transits，which cause a slight dimming of starlight when a planet crosses the face of its star．In＂Kepler＇s Planet Candidates，＂the systems are the letters（A，F，G，K，M）designate star types．The simulated stellar disks and the planet silhouettes
are shown at the same scale，with saturated star colors．Look carefully：somesystems have multiple planets．For reference，Jupiter is shown transiting the Sun．Differences can be seen when comparing to the November 2013 ＂Kepler＇s Planet Candidates，＂in particular in the top row．As more data are added and some are better understood the Kepler catalog is updated．Many new candidates are http：／／www．nasa．gov／mission＿pages／kepler／multimedia．
www．nasa．gov
Low mass stars are much more plentiful than high－mass stars

Importance of stars: Numbers

$>$ Number of stars, by mass, for different regions

Orion (Drass+2016)

Taurus (Briceno+2002)

NCG 3603 (Stolte+ 2006)
$>$ Low mass stars are much more plentiful than high-mass stars

Importance of stars: Numbers

Drass+(2016)
Briceno $+(2002)$
Stolte+(2006
Krumholz \& Federrath (2019)

Importance of stars: Masses

$>$ Main classes of stellar masses

* Massive stars ($\mathrm{M}>8 \mathrm{M}_{\text {sun }}$)

Low-mass stars $\left(0.08 \mathrm{M}_{\text {sun }}<\mathrm{M}\right.$ \& $\quad \mathrm{M}<8 \mathrm{M}_{\text {sun }}$)

* Brown Dwarfs ($\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}$)

$>$ Evolutionary path is determined by its mass

Importance of stars: Masses

$>$ Evolutionary path is determined by its birth mass

Star formation: From the beginning

$>$ Cannot discuss star formation without discussing disc formation and outflows

Star formation: From the beginning

Gravitational collapse phase
Molecular cloud core First core formation Protostar formation/Class 0

Relevant processes include

* Gas
\& Dust
* Radiation
* Rotation \& Turbulence Magnetic fields

Magnetic fields

- Magnetic fields

Magnetic fields

Magnetic field and column density towards Taurus; Planck Collaboration (2016)

Magnetic fields

$>$ Strong field; large-scale structure

Initial configuration

Evolved configuration (t)
> Background represents gas column density

Magnetic fields

$>$ Strong field; large-scale structure

Initial configuration

$>$ Background represents gas column density

Magnetic fields

$>$ Strong field; small scale structure

$>$ Background represents gas column density

Magnetic fields

$>$ Strong field; small scale structure

$>$ Background represents magnetic field strength
$>$ Both models have similar central gas density, but different magnetic field strengths ${ }^{32}$

Theoretical (numerical) astronomy

$>$ Requirements

* A problem to solve:

How is a star born?

Theoretical (numerical) astronomy

$>$ Requirements

* A problem to solve:

How is a star born?

* A description of the physics:
radiation non-ideal magnetohydrodynamic

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}=-\rho \nabla \cdot \boldsymbol{v}
$$

$$
\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}=-\frac{1}{\rho} \nabla \cdot\left[\left(p+\frac{B^{2}}{2}\right) I-\boldsymbol{B} \boldsymbol{B}\right]-\nabla \Phi+\frac{\kappa F}{c}
$$

$$
\rho \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\boldsymbol{B}}{\rho}\right)=(\boldsymbol{B} \cdot \nabla) \boldsymbol{v}+\left.\frac{\mathrm{d} \boldsymbol{B}}{\mathrm{~d} t}\right|_{\text {non-ideal }},
$$

$$
\rho \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{E}{\rho}\right)=-\nabla \cdot \boldsymbol{F}-\nabla \boldsymbol{v}: \boldsymbol{P}+4 \pi \kappa \rho B_{\mathrm{P}}-c \kappa \rho E
$$

$$
\rho \frac{\mathrm{d} u}{\mathrm{~d} t}=-p \nabla \cdot \boldsymbol{v}-4 \pi \kappa \rho B_{\mathrm{P}}+c \kappa \rho E+\left.\rho \frac{\mathrm{d} u}{\mathrm{~d} t}\right|_{\text {non-ideal }},
$$

$$
\nabla^{2} \Phi=4 \pi G \rho
$$

Theoretical (numerical) astronomy

$>$ Requirements

* A problem to solve:

How is a star born?

* A description of the physics:
radiation non-ideal magnetohydrodynamic
* Initial configuration:
rotating sphere of gas, threaded with a magnetic field

Theoretical (numerical) astronomy

$>$ Requirements

* A problem to solve:

How is a star born?

* A description of the physics:
radiation non-ideal magnetohydrodynamic
* Initial configuration:
rotating sphere of gas, threaded with a magnetic field
* A numerical method:
smoothed particle magnetohydrodynamic

Theoretical (numerical) astronomy

Theoretical (numerical) astronomy

$>$ Requirements

* A problem to solve:

How is a star born?

* A description of the physics:
radiation non-ideal magnetohydrodynamic
* Initial configuration:
rotating sphere of gas, threaded with a magnetic field
* A numerical method:
smoothed particle magnetohydrodynamic
* A High Performance Computing cluster
* Patience

Formation of a low-mass star: Expectations

$>$ What we expect to form in addition to a low-mass star:
'Hour-glass' magnetic field morphology

(Kwon+ 2019)

Protoplanetary disc

(ALMA Partnership, 2015)

Outflows and/or jets

(Riaz+2017)

Formation of a low-mass star

Total ionisation
Partial ionisation (aligned) Partial ionisation (anti-aligned)

Formation of a low-mass star

\rightarrow Magnetic fields clearly play an important role in the evolution of the star

* Evolution occurs at a different rate

Formation of a low-mass star

\rightarrow Magnetic fields clearly play an important role in the evolution of the star

* Size \& structure of first core outflows

Total ionisation
Partial ionisation (aligned) Partial ionisation (anti-aligned)

Formation of a low-mass star

$>$ Magnetic fields clearly play an important role in the evolution of the star

* Size \& structure of second core outflows

Total ionisation Partial ionisation (aligned) Partial ionisation (anti-aligned)

Formation of a low-mass star

$>$ Magnetic fields clearly play an important role in the evolution of the star

* Formation of a disc

Clear $\sim 25 \mathrm{au}$ disc

Formation of a low-mass star

$>$ Magnetic fields clearly play an important role in the evolution of the star

* Formation of a disc

Total ionisation
Partial ionisation (aligned) Partial ionisation (anti-aligned)

No disc
$\sim 2 \mathrm{au}$ disc
Clear $\sim 25 \mathrm{au}$ disc

Formation of a low-mass star

\rightarrow Magnetic fields clearly play an important role in the evolution of the star

* The two discs form at different times

Star formation: From the beginning

$>$ Previous simulations act as controlled 'laboratories' where we can carefully examine and test all various physical processes andecharacteristics
$>$ Stars do not form in isolation
>. Star forming environments, on the large coale, are turbulent

Star formation: Stellar nurseries

Star formation: Stellar nurseries

Star formation: Stellar nurseries

Taurus Molecular Cloud
(Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin)

Taurus Molecular Cloud
H_{2} column density map with positions of young stars (Goldsmith et. al., 2008)

Theoretical (numerical) astronomy

$>$ Requirements

* A problem to solve:

How is a star cluster born \& how does it evolve?

* A description of the physics:
radiation non-ideal magnetohydrodynamic
* Initial configuration:
sphere of turbulent gas, threaded with a magnetic field
* A numerical method:
smoothed particle magnetohydrodynamic
* A High Performance Computing cluster
* Patience

Theoretical (numerical) astronomy

$>$ Requirements

* A problem to solve:

How is a star cluster born \& how does it evolve?
> Must make a choice:

* A: investigate small scales at high resolution
* B: investigate large scales at low resolution

Theoretical (numerical) astronomy

$>$ Resolution example:

* small scales at high resolution (top left)
* large scales at low resolution (bottom right)
* in between (top right)

Low-mass star cluster formation

Partial ionisation (aligned)

Cluster Formation: Magnetic field lines

$>$ Magnetic fields cross dense filaments approximately perpendicularly
$>$ Magnetic fields are approximately parallel to low-density filaments

Cluster Formation: Stellar Mass

$>$ No trend in IMF (although this is low-number statistics)

Cluster Formation: Stellar Mass

$>$ No trend in IMF (although this is low-number statistics)

Cluster Formation: Outflows

$>$ None (most likely due to low resolution)

Cluster Formation: Protostellar discs

$>$ Large protostellar discs form in all nine our models

Cluster Formation: Protostellar dises

$>$ Discs are larger $\&$ more varied in these cluster simulations than the isolated simulations

Cluster Formation: Protostellar discs

$>$ Large protostellar discs frequently form and interact

Cluster Formation: Protostellar discs: Hydro

>Large protostellar discs frequently form and interact

Conclusions

$>$ A star＇s entire life is predetermined by its initial mass
$>$ Understanding star formation is necessary to understand all aspects of astronomy
$>$ Studying star formation necessarily includes studying disc formation and stellar outflows
High－mass stars live shorter than low－mass stars，but have a greater affect on their environment
$>$ There are more low－mass stars than high－mass stars（initial mass function）
$>$ Star forming regions contain gas \＆dust and are permeated by strong magnetic fields
$>$ Magnetic．fields strongly affect star formation
$>$ Stars seldom form in isolation
$>$ Stars can be modelled
$>$ In isolation with high resolution
$>$ In cluster environments at lower resolution

DiRAC
（⿴囗大⿹勹巳 MONASH University

