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Complex Calculation: Re
Required Components & considerations “ap

» To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)
The 1initial properties of the system (i.e. initial conditions)
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» Other considerations
Artificial terms
Timestepping
Resolution
Conservation laws to ensure accuracy
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» Recall: decreasing dx by a factor 2
» doubles the number of calculations per step
» doubles the number of steps
dx i
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In numerical studies, the user must always
balance resolution with runtime!
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» Testing four resolutions: 7, ¢ = 32,64,128 & 256
» Runtime is considerably longer for higher resolutions
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"i )Q‘ Resolution:
Star formation
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» For realistic problems, we may not know the correct answer,

so what resolution do we choose?

» This is the radial velocity (outflow) from a star formation simulation at two different times

at various resolutions:
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» Is my default resolution reasonable?
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Resolution:
i~ Star formation
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» For realistic problems, we may not know the correct answer,

so what resolution do we choose?
» Consider convergence
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" )Q‘ Resolution:
| Star formation
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» For realistic problems, we may not know the correct answer,
so what resolution do we choose?
» Consider the runtime

v, [km/s]

CPU-hours

10710
g/cm3]

pmax [



/T/% “| Resolution:
LR .
Tt Star formation

» CPU-hours represents the number of computer-hours required, which should scale with the
number of processors

» Wall-hours represent the actual passage of time as perceived by us
(left: grey lines at 30d, 1yr & 2yrs)
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Resolution & Conservation:
Star formation

Linear Momentum [code units]

» Momentum is decently well conserved

1.0x10°

N;10'§' BE—
N=3x10?
11 N=10
1.0x10
X N=3x105 ——
10x1072 + N=3x10" e
1.0x107
1.0x1074 |
1.0x107
1.0x10°
1.0x107 |
1.0x1078 |
1'0X10_9 18 ‘16 ‘14 ‘12 ‘10 | 8 | 6 | 4 2
10" 10" 10 10" 101 10® 10° 10* 10
3
pmax [g/Cm ]

Angular Momentum [code units]

1.0x10™"

_1 L
9.9x10

_1 L
9.8x10

_1 L
9.8x10
98x107"

-1 L
9.7x10

-1 L
9.7x10

-1 L
9.6x10

9.6x107" |

-1
9.5x10
10" 10

pmax

[g/crn3]

-16 10—14 10—12 10—10 10—8 10—6



| Defining your problem:
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1Defining quantities on a 2D grid

» Eulerian grid: grid of constant spacing
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» Scalars are calculated at cell-centre
» Vectors are calculated at cell-interface
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» Energy injected into the centre and allowed to evolve

column density
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AT % Sedov blast wave:
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Sedov blast wave:
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Complex Calculation:
Kelvin-Helmholtz instability

» Recall the rolling clouds: This demonstrates the Kelvin-Helmholtz instability




Complex Calculation:
| Kelvin-Helmholtz instability

» This models the shear layer between fluids of different densities:

» Periodic boundaries in the x-direction; fixed in y-direction
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Complex Calculation:
o Kelvin-Helmholtz instability

» This models the shear layer between fluids of different densities:

> Periodic boundaries in all directions
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Y027 Complex Calculation:
- Kelvin-Helmholtz instability

» This models the shear layer between fluids of different densities:
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Complex Calculation:
Required Components

» To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)
The 1initial properties of the system (i.e. initial conditions)
Multi-dimensional scheme

» How complex can these calculations get?




Adding complexity:
d Other ‘fluid’ components

» Continuum Equations:

Continuity equation:

Equation of motion:

Energy equation:

Equation of state:

> Where

Dt

Dwv
Dt

Du
Dt

is the Lagrangian (or co-moving) derivative

—pV - v

0
&‘l"v'v
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» Many astrophysical phenomena include magnetic fields. The fluid equations become

Dp

T = V.

Dt py v

D 1 B? 1
k- ——VKPJr—)]I——BB]
Dt p 200 o
DB

D—t = VX(’UXB)

D P

o A

Dt P

» Magnetic fields are vectors, thus numerically treated like velocity fields
» Requires artificial resistivity, similar in to artificial viscosity and artificial conductivity
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» Many astrophysical phenomena include magnetic fields.

» The fluid equations intrinsically contain magnetic monopoles:

Analytically zero

2
Dv - _ _lv[(p+B—>ﬂ—iBB]
Dt p 2410 1o
- ve 1VB?—V.(BB)]
p o Hop |2
— vP 1 EVB2—{EVBQ—BX(VXB)—FB(V'B)}]
p - Hop |2 2
VP (VxB)xB |B(V-B)
- 14 +
P Hop Hop

Numerically non-zero (possibly)

» Requires ‘cleaning’ method to remove numerical magnetic monopoles
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» Many astrophysical phenomena include magnetic fields.

density
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| Adding complexity:
Other ‘fluid’ components
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Adding complexity:
Other ‘fluid’ components: Shocks

» Sod shock tube (hydro) vs Brio Wu shock tube (MHD)
» | Rarefaction wave

» | Compound wave

> [Contact discontinuity

»| Shock wave
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» Many astrophysical phenomena include magnetic fields.
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Adding complexity:
8| Other ‘fluid’ components
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Interaction with non-fluids

» Many engineering simulations require
» complex boundary conditions (left)
» the fluid to interact with solid, but moveable, objects (right)
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Interaction with non-fluids:
Non-uniform Boundaries

» To minimise sloshing in aircraft wings > Coating car cavities with wax
(Calderon-Sanchez + 2019) (Chitneedi, Peng & Verma 2019)

(a)22.1s

» Lubricating a gearbox
(Bannier+ 2019)

(b) 24.0 s

(b) 1.0s

(c) 10.0s

(d) 22.0s P



Interaction with non-fluids

» Many astrophysical phenomena include non-fluid components

> Dust
> Stars
> Dark matter

» These non-fluid components typically interact via gravity or drag

» If only gas:

Dp
Dt
Dv
Dt
Du
Dt
Vip

—pV v
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p

P
Nl v ARPY
P

ArGp
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Interaction with non-fluids

» Many astrophysical phenomena include non-fluid components

» Dust

» Stars

» Dark matter
» These non-fluid components are pressureless and typically interact via gravity or drag
» If gas, stars and dark matter:

Dp
o T eV
D 1
—f = __VP,-Vd
Dt Pg
Dwv,
= —Vo
Dt
Dvdm
= -Vo
Dt
Du, By
Dt Pq °

Vi@ = 4nGp



Interaction with non-fluids

» Many astrophysical phenomena include non-fluid components

» Dust

» Stars

» Dark matter
» These non-fluid components are pressureless and typically interact via gravity or drag
» If gas & dust:

0p
a_tg + V- (pevy) =0,
004
— + V. =0,
5 T (Pava)
ov,
Pg a—t—l—vg-va = pof + K(vg —vy) — VP,

ov
£d (a—td + vg - Vvd) = paf — K(vqg — vy),

Laibe & Price (2014); Lagrangian formalism so 5, = % Dipierrof (2015)
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» (QGas + Dust simulations
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| Sub-grid physics

» Resolution is chosen based upon the size of the object you want to study and the
computational resources
» What about physical processes that are below the resolution?
» Implement ‘sub-grid’ models:
» Use the macroscopic (resolved) properties to predict how something smaller than
a resolved element would behave
» Use the results from the sub-grid model to predict how this would influence the
macroscopic properties; modify as required
» Often resolution dependent
» Require careful calibration and often ‘fine-tuning’
» Example: feedback from supernovae when modelling galaxy evolution
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Sub-grid physics:
xample: AGN feedback sub-grid models

» Each row represents one component of the sub-grid model
» Analytical accretion rate; analytical feedback rate; numerical accretion method;
artificial black hole advection method; particle accretion condition
» Each column represents one possible option; shaded options represent free parameters
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Wurster & Thacker (2013a,b)
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Codmg Words of Wisdom

e l‘ L.

B &8 99 little bugs in the code.
~»27 99 little bugs in the code. |
¥ Take one down, patch it around.

Wi 127 little bugs in the code...

"Always code as if the guy who ends up
maintaining your code will be a violent
psychopath who.knows where you live."

~ John Woods

et T 2

| For any questlons on numerlcal hydrodynamlcs or computatlonal astrophysws please
feel free to contact me: jhw5@st-andrews.ac.uk



