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Complex Calculation:

Required Components & considerations

2

Re-cap

Ø To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)

The initial properties of the system (i.e. initial conditions)

Ø Other considerations

Artificial terms

Timestepping

Resolution

Conservation laws to ensure accuracy



Resolution:

Warning!
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Ø Recall: decreasing dx by a factor 2 

Ø doubles the number of calculations per step

Ø doubles the number of steps
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In numerical studies, the user must always 

balance resolution with runtime!

Re-cap



Resolution:

Sod Shock
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Ø Testing four resolutions: nx,left = 32,64,128 & 256

Ø Runtime is considerably longer for higher resolutions 

Re-cap



Resolution:

Star formation

6

Ø For realistic problems, we may not know the correct answer, 

so what resolution do we choose?

Ø This is the radial velocity (outflow) from a star formation simulation at two different times 

at various resolutions:

Ø Is my default resolution reasonable?
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Resolution:

Star formation
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Ø For realistic problems, we may not know the correct answer, 

so what resolution do we choose?

Ø Consider convergence
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Resolution:

Star formation
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Ø For realistic problems, we may not know the correct answer, 

so what resolution do we choose?

Ø Consider the runtime
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Resolution:

Star formation
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Ø CPU-hours represents the number of computer-hours required, which should scale with the 

number of processors

Ø Wall-hours represent the actual passage of time as perceived by us

(left: grey lines at 30d, 1yr & 2yrs)
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Resolution & Conservation:

Star formation
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Ø Momentum is decently well conserved
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Ø Eulerian grid: grid of constant spacing

Ø Scalars are calculated at cell-centre

Ø Vectors are calculated at cell-interface

⍴i-1/2,j+1/2                              ⍴i+1/2,j+1/2                                                         

ui-1/2,j+1/2                              ui+1/2,j+1/2                                                          

Pi-1/2, j+1/2                             Pi+1/2,j+1/2

Defining your problem:

Defining quantities on a 2D grid

12

dx
dx

dx

vx,i-1,j+1/2

i – 1        i – 1/2               i i + 1/2 i + 1

j

j + 1

dyvx,i,j+1/2
vx,i+1,j+1/2

vy,i-1/2,j+1 vy,i+1/2,j+1

vy,i-1/2,j vy,i+1/2,j



Sedov blast wave
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Ø Energy injected into the centre and allowed to evolve



Sedov blast wave:

When there’s a bug!
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Evil c
lown sa

ys

“Debug your C
ode” 



Sedov blast wave:

Resolution
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Sedov blast wave:

Total Energy
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Complex Calculation:

Kelvin-Helmholtz instability
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Ø Recall the rolling clouds:  This demonstrates the Kelvin-Helmholtz instability



Complex Calculation:

Kelvin-Helmholtz instability
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Ø This models the shear layer between fluids of different densities:

Ø Periodic boundaries in the x-direction; fixed in y-direction
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Complex Calculation:

Kelvin-Helmholtz instability
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Ø This models the shear layer between fluids of different densities:

Ø Periodic boundaries in all directions
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Complex Calculation:

Kelvin-Helmholtz instability
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Ø This models the shear layer between fluids of different densities:



Complex Calculation:

Required Components
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Ø To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)

The initial properties of the system (i.e. initial conditions)

Multi-dimensional scheme

Ø How complex can these calculations get?



Adding complexity:

Other ‘fluid’ components
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Ø Continuum Equations:

Ø Where 

is the Lagrangian (or co-moving) derivative

Continuity equation: Dρ

Dt
= �ρr · v

Equation of motion: Dv

Dt
= �

1

ρ
rP

Energy equation: Du
Dt

= �
P

ρ
r · v

Equation of state: P = (γ � 1) ρu

D

Dt
⌘

∂

∂t
+ v ·r



Adding complexity:

Other ‘fluid’ components
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Ø Many astrophysical phenomena include magnetic fields.  The fluid equations become

Ø Magnetic fields are vectors, thus numerically treated like velocity fields

Ø Requires artificial resistivity, similar in to artificial viscosity and artificial conductivity
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Ø Many astrophysical phenomena include magnetic fields.

Ø The fluid equations intrinsically contain magnetic monopoles:

Ø Requires ‘cleaning’ method to remove numerical magnetic monopoles
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Adding complexity:

Other ‘fluid’ components
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Analytically zero

Numerically non-zero (possibly)



Adding complexity:

Other ‘fluid’ components

28

Ø Many astrophysical phenomena include magnetic fields.



Adding complexity:

Other ‘fluid’ components: Shocks
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Ø Sod shock tube (hydro) vs Brio Wu shock tube (MHD)

Ø Rarefaction wave

Ø Compound wave

Ø Contact discontinuity

Ø Shock wave



Adding complexity:

Other ‘fluid’ components

31

Ø Many astrophysical phenomena include magnetic fields.

James Wurster




Interaction with non-fluids

32

Ø Many engineering simulations require

Ø complex boundary conditions (left)

Ø the fluid to interact with solid, but moveable, objects (right)



Interaction with non-fluids: 

Non-uniform Boundaries
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Ø To minimise sloshing in aircraft wings

(Calderon-Sanchez + 2019)

Ø Lubricating a gearbox

(Bannier+ 2019)

Ø Coating car cavities with wax

(Chitneedi, Peng & Verma 2019)
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Dρ
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= �ρr · v
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Interaction with non-fluids
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Ø Many astrophysical phenomena include non-fluid components

Ø Dust

Ø Stars

Ø Dark matter

Ø These non-fluid components typically interact via gravity or drag

Ø If only gas: 



Dρg
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Interaction with non-fluids
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Ø Many astrophysical phenomena include non-fluid components

Ø Dust

Ø Stars

Ø Dark matter

Ø These non-fluid components are pressureless and  typically interact via gravity or drag

Ø If gas, stars and dark matter:



Ø Many astrophysical phenomena include non-fluid components

Ø Dust

Ø Stars

Ø Dark matter

Ø These non-fluid components are pressureless and  typically interact via gravity or drag

Ø If gas & dust:

Laibe & Price (2014); Lagrangian formalism so                                                                                                Dipierro+ (2015)

Interaction with non-fluids

37

∂ρg

∂t
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Interaction with non-fluids
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Ø Gas + Dust simulations



Sub-grid physics
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Ø Resolution is chosen based upon the size of the object you want to study and the 

computational resources

Ø What about physical processes that are below the resolution?

Ø Implement ‘sub-grid’ models:

Ø Use the macroscopic (resolved) properties to predict how something smaller than 

a resolved element would behave

Ø Use the results from the sub-grid model to predict how this would influence the 

macroscopic properties; modify as required

Ø Often resolution dependent

Ø Require careful calibration and often ‘fine-tuning’

Ø Example: feedback from supernovae when modelling galaxy evolution



Ø Each row represents one component of the sub-grid model

Ø Analytical accretion rate; analytical feedback rate; numerical accretion method; 

artificial black hole advection method; particle accretion condition

Ø Each column represents one possible option; shaded options represent free parameters

Wurster & Thacker (2013a,b)

Sub-grid physics:

Example: AGN feedback sub-grid models

Stochastic-Unconditional Stochastic-Conditional Continual-Conditional

Couple to Tracer mass Δl along Δl towards

gas particle stellar gradients centre of mass

d < hBH d < hBH d < εS2 d < hBH
vrel < f cs vrel < vcirc gravitationally bound
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Illustris Simulation: Vogelsberger+(2014): https://www.youtube.com/watch?v=QSivvdIyeG4

Complex calculation:

Put it all together!



Coding Words of Wisdom
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For any questions on numerical hydrodynamics or computational astrophysics, please 

feel free to contact me: jhw5@st-andrews.ac.uk


