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Example: Astrophysics: Galaxy merger
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Wurster & Thacker (2013): https://www.youtube.com/watch?v=8LdYgsHVpLU



Complex Calculation:

Required Components
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Ø To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)

The initial properties of the system (i.e. initial conditions)

Re-cap
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Defining your problem:

Defining quantities
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Ø Eulerian grid: grid of constant spacing

Ø A few cells:

Ø Scalars are calculated at cell-centre

Ø Vectors are calculated at cell-interface

⍴L      ⍴L     ⍴L       ⍴L      ⍴L     ⍴L     ⍴L      ⍴L     ⍴L     ⍴R      ⍴R     ⍴R     ⍴R     ⍴R     ⍴R    ⍴R      ⍴R     ⍴R    ⍴R     

dx
dx

dx

vx,i-1                                                        vx, i vx, i+1

i – 3/2        i – 1               i – 1/2                   i i + 1/2 i + 1            i + 3/2

Re-cap



Ø Continuum equations

Ø There exists various schemes (e.g. donner-cell) that stabilise the code

Fluid equations:

Continuum vs 1D-Numerical
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Continuity equation: Dρ

Dt
= �ρr · v

Equation of motion: Dv

Dt
= �

1

ρ
rP

Energy equation: Du
Dt

= �
P

ρ
r · v

Equation of state: P = (γ � 1) ρu



Ø Discrete equations in Eulerian form:

Ø f(a) represents the Lagrangian part of the derivative, and can be first, second, third, ..., order

Fluid equations:

Continuum vs 1D-Numerical
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Boundaries
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Ø We almost have enough information to run a simple simulation,

but what happens at the edge of the simulation?

Ø Similar to solving differential equations, boundary conditions are required (e.g.)

Ø Fixed / Inflow

Ø Outflow

Ø Reflective

Ø Periodic

Active DomainBoundary region
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Initial conditions:

Sod Shock
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Ø Initial conditions for the Sod Shock

Ø Boundary Conditions: fixed (since we stop the problem before the shock hits the walls)

Re-cap



Sod Shock

Evolution
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Ø Ringing and instabilities occur at the shock wave dampen as the shock propagates 

Re-cap



Sod Shock:

Structure of shock
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Ø Physical acceptable solution contains three distinct waves:

Ø shock wave 

Ø contact discontinuity

Ø rarefaction wave 



Sod Shock:

Structure of shock
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Ø Shock Wave

Ø Strong discontinuity in density, pressure and fluid velocity

Ø Supersonic movement caused by a strong pressure or velocity gradient



Sod Shock:

Structure of shock
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Ø Contact discontinuity

Ø Discontinuity in density; pressure and fluid velocity are constant

Ø Moving with the local fluid velocity



Sod Shock:

Structure of shock
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Ø Rarefaction wave 

Ø Continuous change in density, pressure and fluid velocity

Ø Moving with the sound speed relative with respect to the local fluid velocity



Sod Shock

Evolution
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Ø Ringing and instabilities occur at the shock wave & dampen as the shock propagates 

Ø Numerical methods often have difficulty resolving sharp discontinuities

Ø The algorithms typically overpredict in one cell, then underpredict in the next

If th
e fluid equations are correct, 

then we need to add numerical 

equations to compensate



Ø Numerical algorithms are required for stability

Ø The form and parameterisation of these requires careful consideration to suppress 

numerical instabilities but not physical instabilities

Ø Modify the velocity by adding in an artificial pressure term:

Ø Only add q for converging flows

Ø ⍺ is a value between 0 & 1, which can either be a fixed value, or dynamically calculated

Sod Shock:

Artificial terms: Artificial viscosity
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Sod Shock:

Artificial terms: Artificial viscosity
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Ø Numerical algorithms are required for stability

Ø The form and parameterisation of these requires careful consideration to suppress 

numerical instabilities but not physical instabilities



Sod Shock:

Artificial terms: Artificial viscosity
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Ø Artificial viscosity well suppresses the ringing, and the numerical results (dots) better 

match the analytical result (blue)

No artificial viscosity With maximal artificial viscosity



Sod Shock:

Artificial terms: Artificial viscosity
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Ø Even with artificial viscosity, there is still some ‘blips’ in energy and pressure occurring at 

the contact discontinuity



Sod Shock:

Artificial terms: Artificial conductivity 
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Ø Numerical algorithms are required for stability

Ø The form and parameterisation of these requires careful consideration to suppress 

numerical instabilities but not physical instabilities

Ø Since there is no instabilities in velocity at the contact discontinuity, we need to add at 

artificial term to the internal energy: artificial conductivity:

Ø There are various forms of artificial conductivity throughout the literature

Continuum artificial conduuctivity:
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Sod Shock:

Artificial terms: Art. viscosity + art. conductivity
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Ø Numerical algorithms are required for stability

Ø Alternatively, we can use

Ø Given the similarities between the energy equation and equation of motion, we can instead 

use

Ø with
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= �

P + q

ρ
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Sod Shock:

Artificial terms: Art. viscosity + art. conductivity

24

Ø Numerical algorithms are required for stability

Ø The form and parameterisation of these requires careful consideration to suppress 

numerical instabilities but not physical instabilities



Sod Shock:

Artificial terms: Art. viscosity + art. conductivity
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Ø The rarefaction wave is stable, thus we do not need to add in another numerical algorithms



Sod Shock:

Artificial terms: Art. viscosity + art. conductivity
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Ø Comparing without artificial terms (black), with artificial viscosity (red) & both (green) at 

the contact discontinuity 



Sod Shock:

Boundaries: A Cautionary Tale
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Ø Incorrect boundaries (either by choice or a bug) will lead to incorrect answers



Conservation Laws
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Ø Physics demands that certain quantities are conserved:

Ø Mass

Ø Energy

Ø Linear momentum

Ø Angular momentum

Ø Numerical experiments should also conserve these values

Ø Eulerian formalism (the equations in these slides) is not guaranteed to conserve mass

Ø SPH formalism (the graphs in these slides) is guaranteed to conserve mass by design



Conservation Laws
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Ø Physics demands that certain quantities are conserved:

Ø Mass

Ø Energy

Ø Linear momentum

Ø Angular momentum

Ø Conserved quantities for the Sod Shock tube:



dt =
1

N

2⇡~r

~v
where N is the number of steps per orbit

= C
~r

~v
where C  1

Timestepping

34

Ø As the simulation evolves, what timestep do we choose?

Ø As long as possible, but short enough to resolve the physics

Ø We want this to be chosen by the programme and not  as an input parameter



Timestepping
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Ø As the simulation evolves, what timestep do we choose?

Ø As long as possible, but short enough to resolve the physics

Ø We want this to be chosen by the programme and not  as an input parameter

dt =
1

N

2⇡~r

~v
where N is the number of steps per orbit

= C
~r

~v
where C  1
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where C  1

Timestepping
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Ø The previous timestep can be extended to numerical fluid dynamics

Ø Courant–Friedrichs–Lewy is a common limiting timestep:

Ø This is based upon “How long does it take information (e.g. a wave) to travel from one side 

of the cell to the other?”

Ø If a wave travels too fast, then it is unresolved and the simulation may break

vx,i-1                                                        vx, i vx, i+1

dxi



Ø Although testable on well known problems, selecting a dt coefficient can be challenging in 

practical simulations

Ø A timestep governing non-ideal MHD is

Timestepping

A practical warning
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dt = C
dx2

i

⌘i

where

C = 1/6 (Bai 2014)

C = 1/2⇡ (Wurster+ 2016)

C = 1/4⇡ (Wurster, miscellaneous tests)

C = 1/10⇡ (Tsukamoto+2015)



Timestepping

A practical warning
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Ø Although testable on well known problems, selecting a dt coefficient can be challenging 

Ø Each line represent a different simulation.  The red line does not match the rest of the trends

Ø The blue line is the same model, but with a smaller C



Resolution
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Ø Computers have finite resources, and users have finite time/patience

Ø To determine the desired resolution, must carefully consider

Ø What are you trying to model?

Ø What are your computational resources?

Ø Our options are generally

Ø Model a small region at high resolution

Ø Model a large region at low resolution



Resolution:

Geographic example

Pillars of Creation in Eagle Nebula

(source: APOD, Jan. 7, 2015)

Ø Resolution example:

v small scales at high resolution (top left)

v large scales at low resolution (bottom right)

v in between (top right)



Resolution:

Example: Modelling a molecular cloud

Wurster, Bate & Price (2019)

Ø Want to resolve star formation 

Ø Require 105 particles / Msun or 

10-5Msun/particle

Ø Resources allow for 5x106 particles    

Ø Can reasonably model a cloud of 50Msun

Ø Want to model an entire molecular cloud

Ø Cloud contains 105 Msun

Ø Resources allow for 5x106 particles 

Ø Can reasonably resolve down to 0.02Msun

Northern Orion Molecular Cloud; researchgate.net



Resolution:

Sod Shock
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Ø Investigating the shock wave for four resolutions: nx,left = 32,64,128 & 256



Resolution:

Sod Shock
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Ø Investigating the contact discontinuity for four resolutions: nx,left = 32,64,128 & 256



Resolution:

Sod Shock
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Ø Testing four resolutions: nx,left = 32,64,128 & 256

Ø Conserved quantities get better with increasing resolution



Resolution:

Warning!
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Ø Recall: decreasing dx by a factor 2 

Ø doubles the number of calculations per step

Ø doubles the number of steps
S
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where C  1

In numerical studies, the user must always 

balance resolution with runtime!



Resolution:

Sod Shock
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Ø Testing four resolutions: nx,left = 32,64,128 & 256

Ø Runtime is considerably longer for higher resolutions 


