Numerical Hydrodynamics II

Example: Astrophysics: Galaxy merger

Complex Calculation: Required Components

$>$ To solve any system numerically, we require

A method to divide the region (e.g. grids)
A method to describe the evolution of the region
(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)
The initial properties of the system (i.e. initial conditions)

Defining your problem: Defining quantities

$>$ Eulerian grid: grid of constant spacing

ρ_{L}	ρ_{R}	$\rho_{\text {R }}$	$\rho_{\text {R }}$	ρ_{R}	ρ_{R}	ρ_{R}		ρ_{R}	ρ_{R}	ρ_{R}									

$>$ A few cells:

$\rho_{i-3 / 2}$
$\mathbf{u}_{i-3 / 2}$
$\mathrm{P}_{i-3 / 2}$

$$
\begin{aligned}
& \rho_{i-1 / 2} \\
& \mathrm{u}_{i-1 / 2}
\end{aligned}
$$

$$
\mathrm{P}_{i-1 / 2} \quad v_{x, i} \quad \mathrm{P}_{i+1 / 2}
$$

$$
\begin{gathered}
\mathrm{\rho}_{i+3 / 2} \\
\mathrm{U}_{i+3 / 2} \\
\mathrm{P}_{i+3 / 2}
\end{gathered}
$$

> Scalars are calculated at cell-centre
$>$ Vectors are calculated at cell-interface

Fluid equations: Continuum vs 1D-Numerical

$>$ Continuum equations

Continuity equation: $\frac{\mathrm{D} \rho}{\mathrm{D} t}=-\rho \nabla \cdot \boldsymbol{v}$
Equation of motion: $\quad \frac{\mathrm{D} \boldsymbol{v}}{\mathrm{Dt}}=-\frac{1}{\rho} \nabla P$
Energy equation: $\frac{\mathrm{D} u}{\mathrm{D} t}=-\frac{P}{\rho} \nabla \cdot \boldsymbol{v}$
Equation of state: $\quad P=(\gamma-1) \rho u$
$>$ There exists various schemes (e.g. donner-cell) that stabilise the code

Fluid equations: Continuum vs 1D-Numerical

$>$ Discrete equations in Eulerian form:

$$
\begin{aligned}
v_{x, i}^{n+\frac{1}{2}} & =v_{x, i}^{n-\frac{1}{2}}-d t\left(\frac{2}{\rho_{i+\frac{1}{2}}^{n}+\rho_{i-\frac{1}{2}}^{n}} \frac{P_{i+\frac{1}{2}}^{n}-P_{i-\frac{1}{2}}^{n}}{d x}+v_{x, i}^{n-\frac{1}{2}} f(v)\right) \\
\rho_{i+\frac{1}{2}}^{n+1} & =\rho_{i+\frac{1}{2}}^{n}-d t\left(\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n+\frac{1}{2}}-v_{x, i}^{n+\frac{1}{2}}}{d x}+\frac{v_{x, i+1}^{n+\frac{1}{2}}+v_{x, i}^{n+\frac{1}{2}}}{2} f(\rho)\right) \\
u_{i+\frac{1}{2}}^{n+1} & =u_{i+\frac{1}{2}}^{n}-d t\left(\frac{P_{i+\frac{1}{2}}^{n}}{\rho_{i+\frac{1}{2}}^{n}} \frac{v_{x, i+1}^{n+\frac{1}{2}}-v_{x, i}^{n+\frac{1}{2}}}{d x}+\frac{v_{x, i+1}^{n+\frac{1}{2}}+v_{x, i}^{n+\frac{1}{2}}}{2} f(u)\right) \\
P_{i+\frac{1}{2}}^{n+1} & =(\gamma-1) \rho_{i+\frac{1}{2}}^{n+1} u_{i+\frac{1}{2}}^{n+1}
\end{aligned}
$$

$>f(a)$ represents the Lagrangian part of the derivative, and can be first, second, third, ..., order

Boundaries

$>$ We almost have enough information to run a simple simulation, but what happens at the edge of the simulation?
$>$ Similar to solving differential equations, boundary conditions are required (e.g.)
$>$ Fixed / Inflow
$>$ Outflow
$>$ Reflective
$>$ Periodic

Initial conditions: Sod Shock

$>$ Initial conditions for the Sod Shock
$>$ Boundary Conditions: fixed (since we stop the problem before the shock hits the walls)

Sod Shock

$>$ Ringing and instabilities occur at the shock wave dampen as the shock propagates

Sod Shock:

Structure of shock

$>$ Physical acceptable solution contains three distinct waves:
$>$ shock wave
$>$ contact discontinuity
$>$ rarefaction wave

Sod Shock:

Structure of shock

> Shock Wave
$>$ Strong discontinuity in density, pressure and fluid velocity
$>$ Supersonic movement caused by a strong pressure or velocity gradient

Sod Shock:

Structure of shock

$>$ Contact discontinuity
$>$ Discontinuity in density; pressure and fluid velocity are constant
> Moving with the local fluid velocity

Sod Shock:

Structure of shock

$>$ Rarefaction wave
$>$ Continuous change in density, pressure and fluid velocity
$>$ Moving with the sound speed relative with respect to the local fluid velocity

Sod Shock Evolution

$>$ Ringing and instabilities occur at the shock wave $\&$ dampen as the shock propagates
$>$ Numerical methods often have difficulty resolving sharp discontinuities
$>$ The algorithms typically overpredict in one cell, then underpredict in the next

Sod Shock: Artificial terms: Artificial viscosity

$>$ Numerical algorithms are required for stability
$>$ The form and parameterisation of these requires careful consideration to suppress numerical instabilities but not physical instabilities
$>$ Modify the velocity by adding in an artificial pressure term:

$$
v_{x, i}^{n+\frac{1}{2}}=v_{x, i}^{n-\frac{1}{2}}-d t\left[\frac{2}{\rho_{i+\frac{1}{2}}^{n}+\rho_{i-\frac{1}{2}}^{n}} \frac{\left(P_{i+\frac{1}{2}}^{n}+q_{i+\frac{1}{2}}^{n}\right)-\left(P_{i-\frac{1}{2}}^{n}+q_{i-\frac{1}{2}}^{n}\right)}{d x}+v_{x, i}^{n-\frac{1}{2}} f(v)\right]
$$

where

$$
q_{i+\frac{1}{2}}^{n}=\left\{\begin{array}{cc}
\alpha^{2} \rho_{i+\frac{1}{2}}^{n} \Delta v_{i}^{2} & \text { if } \Delta v_{i}<0 \\
0 & \text { else }
\end{array}\right.
$$

and

$$
\Delta v_{i}=\left(v_{i+\frac{1}{2}}^{n-\frac{1}{2}}-v_{i-\frac{1}{2}}^{n-\frac{1}{2}}\right)
$$

$>$ Only add q for converging flows
$>\alpha$ is a value between $0 \& 1$, which can either be a fixed value, or dynamically calculated

Sod Shock: Artificial terms: Artificial viscosity

$>$ Numerical algorithms are required for stability
$>$ The form and parameterisation of these requires careful consideration to suppress numerical instabilities but not physical instabilities

Sod Shock:

Artificial terms: Artificial viscosity

$>$ Artificial viscosity well suppresses the ringing, and the numerical results (dots) better match the analytical result (blue)

Sod Shock: Artificial terms: Artificial viscosity

$>$ Even with artificial viscosity, there is still some 'blips' in energy and pressure occurring at the contact discontinuity

Sod Shock: Artificial terms: Artificial conductivity

$>$ Numerical algorithms are required for stability
$>$ The form and parameterisation of these requires careful consideration to suppress numerical instabilities but not physical instabilities
$>$ Since there is no instabilities in velocity at the contact discontinuity, we need to add at artificial term to the internal energy: artificial conductivity:

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=-\frac{P}{\rho} \nabla \cdot \boldsymbol{v}+\left.\frac{\mathrm{d} u}{\mathrm{~d} t}\right|_{\text {artificial }}
$$

$>$ There are various forms of artificial conductivity throughout the literature

Sod Shock:
 Artificial terms: Art. viscosity + art. conductivity

$>$ Numerical algorithms are required for stability
$>$ Alternatively, we can use

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=-\frac{P+q}{\rho} \nabla \cdot \boldsymbol{v}
$$

$>$ Given the similarities between the energy equation and equation of motion, we can instead use

$$
P_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1}=(\gamma-1) \rho_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1} u_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1}+q_{i+\frac{1}{2}}^{n}
$$

with

$$
\begin{aligned}
v_{x, i}^{n+\frac{1}{2}} & =v_{x, i}^{n-\frac{1}{2}}-d t\left[\frac{2}{\rho_{i+\frac{1}{2}}^{n}+\rho_{i-\frac{1}{2}}^{n}} \frac{P_{i+\frac{1}{2}}^{n}-P_{i-\frac{1}{2}}^{n}}{d x}+v_{x, i}^{n-\frac{1}{2}} f(v)\right] \\
u_{i+\frac{1}{2}}^{n+1} & =u_{i+\frac{1}{2}}^{n}-d t\left(\frac{P_{i+\frac{1}{2}}^{n}}{\rho_{i+\frac{1}{2}}^{n}} \frac{v_{x, i+1}^{n+\frac{1}{2}}-v_{x, i}^{n+\frac{1}{2}}}{d x}+\frac{v_{x, i+1}^{n+\frac{1}{2}}+v_{x, i}^{n+\frac{1}{2}}}{2} f(u)\right)
\end{aligned}
$$

Sod Shock: Artificial terms: Art. viscosity + art. conductivity

$>$ Numerical algorithms are required for stability
$>$ The form and parameterisation of these requires careful consideration to suppress numerical instabilities but not physical instabilities

Sod Shock:

Artificial terms: Art. viscosity + art. conductivity

$>$ The rarefaction wave is stable, thus we do not need to add in another numerical algorithms

Sod Shock:

Artificial terms: Art. viscosity + art. conductivity

$>$ Comparing without artificial terms (black), with artificial viscosity (red) \& both (green) at the contact discontinuity

Sod Shock:

Boundaries: A Cautionary Tale

$>$ Incorrect boundaries (either by choice or a bug) will lead to incorrect answers

$>$ Physics demands that certain quantities are conserved:
$>$ Mass
$>$ Energy
$>$ Linear momentum
$>$ Angular momentum
$>$ Numerical experiments should also conserve these values
$>$ Eulerian formalism (the equations in these slides) is not guaranteed to conserve mass
$>$ SPH formalism (the graphs in these slides) is guaranteed to conserve mass by design

Conservation Laws

$>$ Physics demands that certain quantities are conserved:
> Mass
$>$ Energy
$>$ Linear momentum
$>$ Angular momentum
$>$ Conserved quantities for the Sod Shock tube:

Timestepping

$>$ As the simulation evolves, what timestep do we choose?
$>$ As long as possible, but short enough to resolve the physics
$>$ We want this to be chosen by the programme and not as an input parameter

$\mathrm{d} t=\frac{1}{N} \frac{2 \pi \vec{r}}{\vec{v}} \quad$ where N is the number of steps per orbit
$=C \frac{\vec{r}}{\vec{v}} \quad$ where $C \leq 1$

Timestepping

$>$ As the simulation evolves, what timestep do we choose?
$>$ As long as possible, but short enough to resolve the physics
$>$ We want this to be chosen by the programme and not as an input parameter

$\mathrm{d} t=\frac{1}{N} \frac{2 \pi \vec{r}}{\vec{v}} \quad$ where N is the number of steps per orbit
$=C \frac{\vec{r}}{\vec{v}} \quad$ where $C \leq 1$

Timestepping

$>$ The previous timestep can be extended to numerical fluid dynamics
$>$ Courant-Friedrichs-Lewy is a common limiting timestep:

$$
d t=\min \left(C \frac{d x_{i}}{v_{i}}, C \frac{d x_{i}}{c_{\mathrm{s}, i}}\right) \quad \text { where } \quad C \leq 1
$$

$>$ This is based upon "How long does it take information (e.g. a wave) to travel from one side of the cell to the other?"
$>$ If a wave travels too fast, then it is unresolved and the simulation may break

Timestepping A practical warning

$>$ Although testable on well known problems, selecting a d t coefficient can be challenging in practical simulations
$>$ A timestep governing non-ideal MHD is

$$
d t=C \frac{d x_{i}^{2}}{\eta_{i}}
$$

where

$$
\begin{aligned}
& C=1 / 6(\text { Bai } 2014) \\
& \hline C=1 / 2 \pi(\text { Wurster }+2016) \\
& \hline C=1 / 4 \pi \text { (Wurster, miscellaneous tests) } \\
& C=1 / 10 \pi \text { (Tsukamoto+2015) }
\end{aligned}
$$

Timestepping A practical warning

$>$ Although testable on well known problems, selecting a $\mathrm{d} t$ coefficient can be challenging
$>$ Each line represent a different simulation. The red line does not match the rest of the trends
$>$ The blue line is the same model, but with a smaller C

Resolution

$>$ Computers have finite resources, and users have finite time/patience
$>$ To determine the desired resolution, must carefully consider
$>$ What are you trying to model?
$>$ What are your computational resources?
$>$ Our options are generally
$>$ Model a small region at high resolution
$>$ Model a large region at low resolution

Resolution:
Geographic example
> Resolution example:

* small scales at high resolution (top left)
* large scales at low resolution (bottom right)
* in between (top right)

Resolution:

Example: Modelling a molecular cloud

$>$ Want to resolve star formation
$>$ Require 10^{5} particles $/ \mathrm{M}_{\text {sun }}$ or $10^{-5} \mathrm{M}_{\text {sun }} /$ particle
$>$ Resources allow for 5×10^{6} particles
$>$ Can reasonably model a cloud of $50 \mathrm{M}_{\text {sun }}$
$>$ Want to model an entire molecular cloud
$>$ Cloud contains $10^{5} \mathrm{M}_{\text {sun }}$
$>$ Resources allow for 5×10^{6} particles
$>$ Can reasonably resolve down to $0.02 \mathrm{M}_{\text {sun }}$

Resolution:
$>$ Investigating the shock wave for four resolutions: $n_{x, \text { left }}=32,64,128 \& 256$

Resolution: Sod Shock
$>$ Investigating the contact discontinuity for four resolutions: $n_{x, \text { left }}=32,64,128 \& 256$

Resolution:

Sod Shock
$>$ Testing four resolutions: $n_{x, \text { left }}=32,64,128 \& 256$
$>$ Conserved quantities get better with increasing resolution

Resolution:

$>$ Recall: decreasing $d x$ by a factor 2
$>$ doubles the number of calculations per step
$>$ doubles the number of steps

$$
d t=C \frac{d x_{i}}{v_{i}} \quad \text { where } \quad C \leq 1
$$

In numerical studies, the user must always balance resolution with runtime!

Resolution: Sod Shock

$>$ Testing four resolutions: $n_{x, \text { left }}=32,64,128 \& 256$
$>$ Runtime is considerably longer for higher resolutions

