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Example: Astrophysics: Star formation
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Wurster, Bate & Price (2018): https://www.youtube.com/watch?v=2SQxgXbdJyg&t=22s



Example: Engineering
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Wave on Oil Rig:                                                    Urban Flooding: 

https://www.youtube.com/watch?v=B8mP9E75D08

https://www.youtube.com/watch?v=jwz0stG4K9o



The Day After Tomorrow (2004): https://www.youtube.com/watch?v=GmjAp2eRDH0

Example: Movies!
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Simple Calculation
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Ø Fluid equations are often rate equations 

(e.g. the Parker wind model: equation for a spherically-symmetric, steady, isothermal 

outflow from a star of mass M*):

Ø When possible, equations should be analytically simplified:

Ø Although simplified, we still cannot analytically solve for u(r)

Ø To solve u(r), numerical methods are required
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Ø The Newton-Raphson Method (commonly referred to as Newton's Method) is a very 

powerful tool to numerically find roots of an equation. In general, assume we are given an 

equation, f(x) = 0 and an initial guess for x = x0. Then,

Ø Using the new x1, we can repeat this method such that

Ø and in general

Ø This process is iterated until | xi+1/xi - 1| < ϵ, where ϵ is a pre-determined tolerance. The 

choice of x0 can be important; the closer to the actual value, the more stable the algorithm.

Simple Calculation:

Using the Newton-Raphson Method 
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x1 = x0 −
f(x0)

df(x0)/dx

x2 = x1 −
f(x1)

df(x1)/dx

xi+1 = xi −

f(xi)

df(xi)/dx



Simple Calculation:

Using the Newton-Raphson Method 
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Ø Using a simple quadratic example:

f(x) = x2 – 4 = 0

Ø From inspection, we know the roots are x = ±2

Ø Using Newton’s method, the equation to iterate is

Ø Assuming initial guesses of x0 = ±6

Ø And we rapidly converge to x = ±2
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Simple Calculation:

Using the Newton-Raphson Method 
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Ø Using a simple quadratic example:

f(x) = x2 – 4 = 0

Ø All x0 > 0 converge to x = +2 and all x0 < 0 converge to x = -2.

Ø Initial guess will determine how quickly the solution converges and to which root it converges

(same plot, just different vertical scales)

Ø This problem is a steady-state, and does not evolve in time

Ø Although steady-state, this does represent the power of Numerical Methods
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N-Body Calculation
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Ø Numerical methods are excellent at calculating N-body motion, such as planetary/cometary 

orbits (e.g. Exercise 3 in Computational Astrophysics)

Ø N-body calculations are integrated in time, and include gravity only but no fluid dynamics



Complex Calculation
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Ø Rather than a steady flow, or a gravity-only simulation, assume we have a dynamically 

evolving situation that includes fluids rather than discrete bodies (e.g. rolling clouds):

Ø We do not have a single equation that can describe this motion

Ø Motion cannot be described analytically

Ø To solve this numerically, we require

Ø The initial properties of the system (i.e. initial conditions)

Ø A method to divide the region (e.g. grids)

Ø A method to describe the edge of the region (i.e. boundary conditions)

Ø A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)



Fluid equations
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Ø Continuum Equations:

Ø Where 

is the Lagrangian (or co-moving) derivative

Continuity equation: Dρ
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= �ρr · v

Equation of motion: Dv
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Fluid equations
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Ø Continuum Equations:

Ø Where 

Ø This is a closed set of equations: 4 equations 4 four unknowns

Ø The system evolves in time (i.e. ∂/ ∂t) & position i.e. (∇)

Ø To convert to numerical equations, must first choose a grid
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Defining your problem
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Ø Assume we have a simple 1D problem where the density is as follows:

Ø How do we divide up the region?



Ø Eulerian grid: 

grid of constant spacing, density varies in each cell

Ø Lagrangian grid: 

grid of varying spacing, mass is constant

Ø Smoothed Particle Hydrodynamics: 

Spheres of constant mass represent ‘packets’ of fluid; 

density is dependent on proximity of neighbours

dx

Defining your problem:

Dividing your region
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⍴L      ⍴L     ⍴L       ⍴L      ⍴L     ⍴L     ⍴L      ⍴L     ⍴L     ⍴R      ⍴R     ⍴R     ⍴R     ⍴R     ⍴R    ⍴R      ⍴R     ⍴R    ⍴R     

dxL

dxR



For Lagrangian systems, the co-moving derivative is simply 

Ø Lagrangian grid: 

grid of varying spacing, mass is constant

Ø Smoothed Particle Hydrodynamics: 

Spheres of constant mass represent ‘packets’ of fluid; 

density is dependent on proximity of neighbours

Defining your problem:

Dividing your region
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Ø Eulerian grid: grid of constant spacing

Ø A few cells:

Ø Quantities need to be defined at a given position.

Ø Scalars: density, internal energy, pressure

Ø Vectors: velocity

dx

Defining your problem:

Defining quantities
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⍴L      ⍴L     ⍴L       ⍴L      ⍴L     ⍴L     ⍴L      ⍴L     ⍴L     ⍴R      ⍴R     ⍴R     ⍴R     ⍴R     ⍴R    ⍴R      ⍴R     ⍴R    ⍴R     

dx
dx

dx

i – 3/2        i – 1               i – 1/2                   i i + 1/2 i + 1            i + 3/2



⍴i-3/2                                                     ⍴i-1/2                                                     ⍴i+1/2                                                         ⍴i+3/2

ui-3/2                                                     ui-1/2                                                     ui+1/2                                                          ui+3/2

Pi-3/2                                                     Pi-1/2                                                     Pi+1/2                                                          Pi+3/2

dx

Defining your problem:

Defining quantities
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Ø Eulerian grid: grid of constant spacing

Ø A few cells:

Ø Scalars are calculated at cell-centre

Ø Vectors are calculated at cell-interface

⍴L      ⍴L     ⍴L       ⍴L      ⍴L     ⍴L     ⍴L      ⍴L     ⍴L     ⍴R      ⍴R     ⍴R     ⍴R     ⍴R     ⍴R    ⍴R      ⍴R     ⍴R    ⍴R     

dx
dx

dx

vx,i-1                                                        vx, i vx, i+1

i – 3/2        i – 1               i – 1/2                   i i + 1/2 i + 1            i + 3/2



Complex Calculation:

Required Components
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Ø To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)

The initial properties of the system (i.e. initial conditions)



Fluid equations:

Continuum vs 1D-Numerical
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Ø Continuity Equation

Dρ
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= �ρr · v
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Fluid equations:

Continuum vs 1D-Numerical
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Ø Continuity Equation
Time n
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Fluid equations:

Continuum vs 1D-Numerical
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Ø Continuity Equation
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Fluid equations:

Continuum vs 1D-Numerical
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Ø Continuity Equation
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Fluid equations:

Continuum vs 1D-Numerical
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Ø Continuity Equation
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Ø The discrete fluid dynamic equations for an Eulerian grid:

Ø where f(a) = ∇a, and can be 0th order, 1st order (Donor cell) or even higher order (e.g. 2nd

order van Leer; 3rd order piecewise parabolic advection; etc...)

Fluid equations:

Continuum vs 1D-Numerical

38

ρ
n+1

i+ 1

2

= ρ
n
i+ 1

2

− dt

✓

ρ
n
i+ 1

2

vnx,i+1 − vnx,i

dx
+

vnx,i+1 + vnx,i

2
f(ρ)

◆

vn+1

x,i = vnx,i − dt

 

2

ρ
n
i+ 1

2

+ ρ
n
i− 1

2

Pn
i+ 1

2

− Pn
i− 1

2

dx
+ vnx,if(v)

!

un+1

i+ 1

2

= un
i+ 1

2

− dt

 

Pn
i+ 1

2

ρ
n
i+ 1

2

vnx,i+1 − vnx,i

dx
+

vnx,i+1 + vnx,i

2
f(u)

!

Pn+1

i+ 1

2

= (γ − 1) ρn+1

i+ 1

2

un+1

i+ 1

2



Ø Quantities are solved at different locations

Ø Should quantities also be solved at different times, where n is the current timestep?

Ø Leapfrog

Ø Update vectors to n + 1/2 

Ø Using updates vectors, update scalars to n+1

Fluid equations:

Time integration

40
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Fluid equations:

Warning!

41

Ø There are several different time and spatial integration techniques

Ø The more advanced the technique…

Ø the more accurate the result

Ø the longer the computational time

In numerical studies, the user must always 

balance accuracy with time!
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Complex Calculation:

Required Components
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Ø To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)

The initial properties of the system (i.e. initial conditions)



Boundaries
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Ø We almost have enough information to run a simple simulation,

but what happens at the edge of the simulation?

Ø Similar to solving differential equations, boundary conditions are required:

Ø Locations required to update scalars:

Ø Locations required to update vectors:

Active DomainBoundary region

⍴1/2                 ⍴3/2                 ⍴5/2                   ⍴7/2

vx,0 vx,1                  vx,2                  vx,3                  vx,4



Boundaries
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Ø We almost have enough information to run a simple simulation,

but what happens at the edge of the simulation?

Ø Similar to solving differential equations, boundary conditions are required:

Ø Fixed (v0 = 0) / inflow (v0 > 0): 

Active DomainBoundary region

⍴0-3/2 ⍴0-1/2                  ⍴1/2                 ⍴3/2                 ⍴5/2                   ⍴7/2

v0
x,-2              v0

x,1                 v0
x,0 vx,1                  vx,2                  vx,3                  vx,4



Boundaries
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Ø We almost have enough information to run a simple simulation,

but what happens at the edge of the simulation?

Ø Similar to solving differential equations, boundary conditions are required:

Ø Outflow: 

Active DomainBoundary region

⍴1/2 ⍴1/2                     ⍴1/2                 ⍴3/2                 ⍴5/2                   ⍴7/2

vx,1                  vx,1                 vx,1                    vx,1                  vx,2                  vx,3                  vx,4



Boundaries
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Ø We almost have enough information to run a simple simulation,

but what happens at the edge of the simulation?

Ø Similar to solving differential equations, boundary conditions are required:

Ø Reflective: 

Active DomainBoundary region

⍴3/2 ⍴1/2                     ⍴1/2                 ⍴3/2                 ⍴5/2                   ⍴7/2

-vx,2               -vx,1                 vx,= 0 vx,1                  vx,2                  vx,3                  vx,4



Boundaries
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Ø We almost have enough information to run a simple simulation,

but what happens at the edge of the simulation?

Ø Similar to solving differential equations, boundary conditions are required:

Ø Periodic: 

Active Domain
Boundary region

⍴N-3/2 ⍴N-1/2              ⍴1/2                 ⍴3/2                 ⍴5/2                   ⍴7/2

vx,N-1             vx,N-1           vx,0= vx,N vx,1                  vx,2                  vx,3                  vx,4

⍴N-7/2 ⍴N-5/2              ⍴N-3/2              ⍴N-1/2                 ⍴1/2                   ⍴3/2

vx, N-4             vx, N-3             vx, N-2             vx,N-1          vx,N = vx,0         vx,1                 vx,2

Boundary region



Complex Calculation:

Required Components

48

Ø To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)

The initial properties of the system (i.e. initial conditions)



Initial conditions:

Sod Shock

49

Ø Initial conditions for the Sod Shock

Ø Boundary Conditions: fixed



Complex Calculation:

Required Components
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Ø To solve any system numerically, we require

A method to divide the region (e.g. grids)

A method to describe the evolution of the region

(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions)

The initial properties of the system (i.e. initial conditions)



Initial conditions:

Astrophysical simulations
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Ø Initial conditions are incredibly important for any simulation

A method to describe the evolution of the region: fluid dynamics equations

A method to divide the region: smoothed particle hydrodynamics

The initial properties of the system: see below

A method to describe the boundaries: sphere-in-box with periodic B.C.s



Complex Calculation:

Next steps

53

Ø Now that we have the basis of a code, can we now run complex physical calculations?

Ø No!

Ø It must first be rigorously tested!

Ø To test codes, we must run simple test problems where an analytical answer is known

Ø In numerical hydrodynamics, a common and simple test problem is the Sod Shock Tube 

(Sod 1978)



Sod Shock

Evolution

54



Sod Shock

Evolution
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Ø Ringing and instabilities occur at the shock wave and propagate backwards


