Numerical Hydrodynamics

Example: Astrophysics: Star formation

Example: Engineering

Wave on Oil Rig:

Urban Flooding:

https://www.youtube.com/watch?v=B8mP9E75D08

Example: Movies!

$>$ Fluid equations are often rate equations
(e.g. the Parker wind model: equation for a spherically-symmetric, steady, isothermal outflow from a star of mass M_{*}):

$$
\left(u^{2}-c_{s}^{2}\right) \frac{1}{u} \frac{d u}{d r}=\left(\frac{2 c_{s}^{2}}{r}-\frac{G M_{*}}{r^{2}}\right)
$$

$>$ When possible, equations should be analytically simplified:

$$
\bar{u}^{2}-\ln \left(\bar{u}^{2}\right)-4 \ln (\bar{r})-\frac{4}{\bar{r}}=K
$$

$>$ Although simplified, we still cannot analytically solve for $u(r)$
$>$ To solve $u(r)$, numerical methods are required

```
Simple Calculation: Using the Newton-Raphson Method
```

$>$ The Newton-Raphson Method (commonly referred to as Newton's Method) is a very powerful tool to numerically find roots of an equation. In general, assume we are given an equation, $f(x)=0$ and an initial guess for $x=x_{0}$. Then,

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{d f\left(x_{0}\right) / d x}
$$

$>$ Using the new x_{1}, we can repeat this method such that

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{d f\left(x_{1}\right) / d x}
$$

and in general

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{d f\left(x_{i}\right) / d x}
$$

$>$ This process is iterated until $\left|x_{i+1} / x_{i}-1\right|<\epsilon$, where ϵ is a pre-determined tolerance. The choice of x_{0} can be important; the closer to the actual value, the more stable the algorithm.

Simple Calculation: Using the Newton-Raphson Method

$>$ Using a simple quadratic example:

$$
f(x)=x^{2}-4=0
$$

$>$ From inspection, we know the roots are $x= \pm 2$
$>$ Using Newton's method, the equation to iterate is

$$
x_{i+1}=x_{i}-\frac{x_{i}^{2}-4}{2 x_{i}}
$$

$>$ Assuming initial guesses of $x_{0}= \pm 6$

$$
\begin{array}{ll}
x_{1}=6.00-\frac{6.00^{2}-4}{2 \cdot 6.00}=3.33 & x_{1}=-6.00-\frac{-6.00^{2}-4}{2 \cdot(-6.00)}=-3.33 \\
x_{2}=3.33-\frac{3.33^{2}-4}{2 \cdot 3.33}=2.27 & x_{2}=-3.33-\frac{3.33^{2}-4}{2 \cdot(-3.33)}=-2.27 \\
x_{3}=2.27-\frac{2.27^{2}-4}{2 \cdot 2.27}=2.02 & x_{3}=-2.27-\frac{2.27^{2}-4}{2 \cdot(-2.27)}=-2.02 \\
x_{4}=2.02-\frac{2.02^{2}-4}{2 \cdot 2.02}=2.00 & x_{4}=-2.02-\frac{2.02^{2}-4}{2 \cdot(-2.02)}=-2.00
\end{array}
$$

$>$ And we rapidly converge to $x= \pm 2$

Simple Calculation: Using the Newton-Raphson Method

$>$ Using a simple quadratic example:

$$
f(x)=x^{2}-4=0
$$

$>$ All $x_{0}>0$ converge to $x=+2$ and all $x_{0}<0$ converge to $x=-2$.
$>$ Initial guess will determine how quickly the solution converges and to which root it converges (same plot, just different vertical scales)

$>$ This problem is a steady-state, and does not evolve in time
$>$ Although steady-state, this does represent the power of Numerical Methods

N-Body Calculation

$>$ Numerical methods are excellent at calculating N-body motion, such as planetary/cometary orbits (e.g. Exercise 3 in Computational Astrophysics)
$>$ N-body calculations are integrated in time, and include gravity only but no fluid dynamics

Complex Calculation

$>$ Rather than a steady flow, or a gravity-only simulation, assume we have a dynamically evolving situation that includes fluids rather than discrete bodies (e.g. rolling clouds):
$>$ We do not have a single equation that can describe this motion
$>$ Motion cannot be described analytically
$>$ To solve this numerically, we require
$>$ The initial properties of the system (i.e. initial conditions)
$>$ A method to divide the region (e.g. grids)
$>$ A method to describe the edge of the region (i.e. boundary conditions)
$>$ A method to describe the evolution of the region (i.e. the set of fluid dynamics equations)

Fluid equations

$>$ Continuum Equations:
Continuity equation: $\frac{\mathrm{D} \rho}{\mathrm{D} t}=-\rho \nabla \cdot \boldsymbol{v}$
Equation of motion: $\quad \frac{\mathrm{D} \boldsymbol{v}}{\mathrm{Dt}}=-\frac{1}{\rho} \nabla P$
Energy equation: $\frac{\mathrm{D} u}{\mathrm{D} t}=-\frac{P}{\rho} \nabla \cdot \boldsymbol{v}$
Equation of state: $\quad P=(\gamma-1) \rho u$
> Where

$$
\frac{\mathrm{D}}{\mathrm{Dt}} \equiv \frac{\partial}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla}
$$

is the Lagrangian (or co-moving) derivative

Fluid equations

$>$ Continuum Equations:
Continuity equation: $\quad \frac{\mathrm{D} \rho}{\mathrm{D} t}=-\rho \nabla \cdot \boldsymbol{v}$
Equation of motion: $\quad \frac{\mathrm{D} \boldsymbol{v}}{\mathrm{Dt}}=-\frac{1}{\rho} \nabla P$
Energy equation: $\frac{\mathrm{D} u}{\mathrm{D} t}=-\frac{P}{\rho} \nabla \cdot \boldsymbol{v}$
Equation of state: $\quad P=(\gamma-1) \rho u$
> Where

$$
\frac{\mathrm{D}}{\mathrm{Dt}} \equiv \frac{\partial}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla}
$$

$>$ This is a closed set of equations: 4 equations 4 four unknowns
$>$ The system evolves in time (i.e. $\partial / \partial t$) \& position i.e. ($\bar{\nabla}$)
$>$ To convert to numerical equations, must first choose a grid

Defining your problem

$>$ Assume we have a simple 1D problem where the density is as follows:

$>$ How do we divide up the region?

Defining your problem:
Dividing your region
Eulerian grid:
grid of constant spacing, density varies in each cell

Lagrangian grid:
grid of varying spacing, mass is constant

Smoothed Particle Hydrodynamics:
Spheres of constant mass represent 'packets' of fluid; density is dependent on proximity of neighbours

Defining your problem: Dividing your region

For Lagrangian systems, the co-moving derivative is simply

$$
\frac{\mathrm{D}}{\mathrm{Dt}} \equiv \frac{\partial}{\partial t}
$$

$>$ Lagrangian grid:
grid of varying spacing, mass is constant

> Smoothed Particle Hydrodynamics:
Spheres of constant mass represent 'packets' of fluid; density is dependent on proximity of neighbours

Defining your problem: Defining quantities

$>$ Eulerian grid: grid of constant spacing

ρ_{L}	$\rho_{\text {R }}$	ρ_{R}	ρ_{R}	$\rho_{\text {R }}$	ρ_{R}	ρ_{R}	ρ_{R}		ρ_{R}	ρ_{R}								
,																		

$>$ A few cells:

$i-3 / 2$

$$
i-1
$$

$$
i-1 / 2 \quad \mathrm{~d} x \longrightarrow+1 / 2
$$

$$
i+1
$$

$$
i+3 / 2
$$

$>$ Quantities need to be defined at a given position.
$>$ Scalars: density, internal energy, pressure
$>$ Vectors: velocity

Defining your problem: Defining quantities

$>$ Eulerian grid: grid of constant spacing

ρ_{L}		$\rho_{\text {R }}$	ρ_{R}	ρ_{R}	ρ_{R}	ρ_{R}	$\rho_{\text {R }}$	ρ_{R}	ρ_{R}	ρ_{R}								
,																		

$>$ A few cells:

$\rho_{i-3 / 2}$
$\mathbf{u}_{i-3 / 2}$
$\mathrm{P}_{i-3 / 2}$

$$
\begin{aligned}
& \rho_{i-1 / 2} \\
& \mathrm{u}_{i-1 / 2}
\end{aligned}
$$

$$
\mathrm{P}_{i-1 / 2} \quad v_{x, i} \quad \mathrm{P}_{i+1 / 2}
$$

$>$ Scalars are calculated at cell-centre
$>$ Vectors are calculated at cell-interface

Complex Calculation: Required Components

$>$ To solve any system numerically, we require

A method to divide the region (e.g. grids)
A method to describe the evolution of the region
(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions) The initial properties of the system (i.e. initial conditions)

Fluid equations: Continuum vs 1D-Numerical

$>$ Continuity Equation

$$
\begin{aligned}
\frac{\mathrm{D} \rho}{\mathrm{D} t} & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t}+\boldsymbol{v} \cdot \nabla \rho & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t} & =-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \nabla \rho
\end{aligned}
$$

Fluid equations:

$>$ Continuity Equation

$$
\begin{aligned}
\frac{\mathrm{D} \rho}{\mathrm{D} t} & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t}+\boldsymbol{v} \cdot \nabla \rho & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t} & =-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{\nabla} \rho \\
\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t} & =-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{\nabla} \rho
\end{aligned}
$$

Time n

Fluid equations: Continuum vs 1D-Numerical

$>$ Continuity Equation

$$
\begin{aligned}
\frac{\mathrm{D} \rho}{\mathrm{D} t} & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t}+\boldsymbol{v} \cdot \nabla \rho & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t} & =-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \nabla \rho \\
\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t} & =-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \nabla \rho \\
\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t} & =-\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n}-v_{x, i}^{n}}{d x}-\boldsymbol{v} \cdot \nabla \rho
\end{aligned}
$$

Fluid equations: Continuum vs 1D-Numerical

$>$ Continuity Equation

$$
\left.\begin{array}{rlrllll}
\frac{\mathrm{D} \rho}{\mathrm{D} t} & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t}+\boldsymbol{v} \cdot \nabla \rho & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t} & =-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \nabla \rho & & & i-1 & i-1 / 2 & i
\end{array}\right]+1 / 2 \quad i+1 \quad i+3 / 2
$$

$\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t}=-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \nabla \rho$
$\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t}=-\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n}-v_{x, i}^{n}}{d x}-\boldsymbol{v} \cdot \nabla \rho$
$\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t}=-\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n}-v_{x, i}^{n}}{d x}-\frac{v_{x, i+1}^{n}+v_{x, i}^{n}}{2} \frac{\rho_{i+\frac{3}{2}}^{n}-\rho_{i-\frac{1}{2}}^{n}}{2 d x}$
'zero-th order' approximation

Fluid equations: Continuum vs 1D-Numerical

$>$ Continuity Equation

$$
\begin{array}{rlrlrll}
\frac{\mathrm{D} \rho}{\mathrm{D} t} & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t}+\boldsymbol{v} \cdot \nabla \rho & =-\rho \nabla \cdot \boldsymbol{v} \\
\frac{\partial \rho}{\partial t} & =-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \nabla \rho \rho & & i-1 / 2 & i & i+1 / 2 & i+1 \\
i+3 / 2 \\
\rho_{i-1 / 2} & & \\
v_{x, i} & \rho_{i+1 / 2} & v_{x, i+1} & \rho_{i+3 / 2} \\
\mathrm{~d} x \longrightarrow
\end{array}
$$

$$
\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t}=-\rho \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \nabla \rho
$$

$$
\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t}=-\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n}-v_{x, i}^{n}}{d x}-\boldsymbol{v} \cdot \nabla \rho
$$

First order donor cell method
$\frac{\rho_{i+\frac{1}{2}}^{n+1}-\rho_{i+\frac{1}{2}}^{n}}{d t}=-\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n}-v_{x, i}^{n}}{d x}-\frac{v_{x, i+1}^{n}+v_{x, i}^{n}}{2} \begin{cases}\frac{\rho_{i+\frac{1}{2}}^{n}-\rho_{i-\frac{1}{2}}^{n}}{d x} & \text { for } \frac{1}{2}\left(v_{x, i+1}^{n}+v_{x, i}^{n}\right)>0 \\ \frac{\rho_{i+\frac{3}{2}}^{n}-\rho_{i+\frac{1}{2}}^{n}}{d x} & \text { for } \frac{1}{2}\left(v_{x, i+1}^{n}+v_{x, i}^{n}\right)<0\end{cases}$

Fluid equations: Continuum vs 1D-Numerical

$>$ The discrete fluid dynamic equations for an Eulerian grid:

$$
\begin{aligned}
\rho_{i+\frac{1}{2}}^{n+1} & =\rho_{i+\frac{1}{2}}^{n}-d t\left(\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n}-v_{x, i}^{n}}{d x}+\frac{v_{x, i+1}^{n}+v_{x, i}^{n}}{2} f(\rho)\right) \\
v_{x, i}^{n+1} & =v_{x, i}^{n}-d t\left(\frac{2}{\rho_{i+\frac{1}{2}}^{n}+\rho_{i-\frac{1}{2}}^{n}} \frac{P_{i+\frac{1}{2}}^{n}-P_{i-\frac{1}{2}}^{n}}{d x}+v_{x, i}^{n} f(v)\right) \\
u_{i+\frac{1}{2}}^{n+1} & =u_{i+\frac{1}{2}}^{n}-d t\left(\frac{P_{i+\frac{1}{2}}^{n}}{\rho_{i+\frac{1}{2}}^{n}} \frac{v_{x, i+1}^{n}-v_{x, i}^{n}}{d x}+\frac{v_{x, i+1}^{n}+v_{x, i}^{n}}{2} f(u)\right) \\
P_{i+\frac{1}{2}}^{n+1} & =(\gamma-1) \rho_{i+\frac{1}{2}}^{n+1} u_{i+\frac{1}{2}}^{n+1}
\end{aligned}
$$

$>$ where $f(a)=\nabla a$, and can be $0^{\text {th }}$ order, $1^{\text {st }}$ order (Donor cell) or even higher order (e.g. $2^{\text {nd }}$ order van Leer; $3^{\text {rd }}$ order piecewise parabolic advection; etc...)

Fluid equations: Time integration

$>$ Quantities are solved at different locations
$>$ Should quantities also be solved at different times, where n is the current timestep?
$>$ Leapfrog
$>$ Update vectors to $n+1 / 2$
$v_{x, i}^{n+\frac{1}{2}}=v_{x, i}^{n-\frac{1}{2}}-d t\left(\frac{2}{\rho_{i+\frac{1}{2}}^{n}+\rho_{i-\frac{1}{2}}^{n}} \frac{P_{i+\frac{1}{2}}^{n}-P_{i-\frac{1}{2}}^{n}}{d x}+v_{x, i}^{n-\frac{1}{2}} f(v)\right)$
$>$ Using updates vectors, update scalars to $n+1$

$$
\begin{aligned}
\rho_{i+\frac{1}{2}}^{n+1} & =\rho_{i+\frac{1}{2}}^{n}-d t\left(\rho_{i+\frac{1}{2}}^{n} \frac{v_{x, i+1}^{n+\frac{1}{2}}-v_{x, i}^{n+\frac{1}{2}}}{d x}+\frac{v_{x, i+1}^{n+\frac{1}{2}}+v_{x, i}^{n+\frac{1}{2}}}{2} f(\rho)\right) \\
u_{i+\frac{1}{2}}^{n+1} & =u_{i+\frac{1}{2}}^{n}-d t\left(\frac{P_{i+\frac{1}{2}}^{n}}{\rho_{i+\frac{1}{2}}^{n}} \frac{v_{x, i+1}^{n+\frac{1}{2}}-v_{x, i}^{n+\frac{1}{2}}}{d x}+\frac{v_{x, i+1}^{n+\frac{1}{2}}+v_{x, i}^{n+\frac{1}{2}}}{2} f(u)\right) \\
P_{i+\frac{1}{2}}^{n+1} & =(\gamma-1) \rho_{i+\frac{1}{2}}^{n+1} u_{i+\frac{1}{2}}^{n+1}
\end{aligned}
$$

Fluid equations: Warning!

$>$ There are several different time and spatial integration techniques
$>$ The more advanced the technique...
$>$ the more accurate the result
$>$ the longer the computational time

In numerical studies, the user must always balance accuracy with time!

Complex Calculation: Required Components

$>$ To solve any system numerically, we require

A method to divide the region (e.g. grids)
A method to describe the evolution of the region
(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions) The initial properties of the system (i.e. initial conditions)

Boundaries

$>$ We almost have enough information to run a simple simulation, but what happens at the edge of the simulation?
$>$ Similar to solving differential equations, boundary conditions are required:

$>$ Locations required to update scalars:

$>$ Locations required to update vectors:

$>$ We almost have enough information to run a simple simulation, but what happens at the edge of the simulation?
$>$ Similar to solving differential equations, boundary conditions are required:
$>$ Fixed $\left(v^{0}=0\right) /$ inflow $\left(v^{0}>0\right)$:

Boundaries

$>$ We almost have enough information to run a simple simulation, but what happens at the edge of the simulation?
$>$ Similar to solving differential equations, boundary conditions are required:
$>$ Outflow:

$>$ We almost have enough information to run a simple simulation, but what happens at the edge of the simulation?
$>$ Similar to solving differential equations, boundary conditions are required:
$>$ Reflective:

Boundaries

$>$ We almost have enough information to run a simple simulation, but what happens at the edge of the simulation?
$>$ Similar to solving differential equations, boundary conditions are required:
$>$ Periodic:

Complex Calculation: Required Components

$>$ To solve any system numerically, we require

A method to divide the region (e.g. grids)
A method to describe the evolution of the region
(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions) The initial properties of the system (i.e. initial conditions)

Initial conditions: Sod Shock

$>$ Initial conditions for the Sod Shock
$>$ Boundary Conditions: fixed

Complex Calculation: Required Components

$>$ To solve any system numerically, we require

A method to divide the region (e.g. grids)
A method to describe the evolution of the region
(i.e. the set of fluid dynamics equations)

A method to describe the edge of the region (i.e. boundary conditions) The initial properties of the system (i.e. initial conditions)

Initial conditions:

Astrophysical simulations

> Initial conditions are incredibly important for any simulation
A method to describe the evolution of the region: fluid dynamics equations A method to divide the region: smoothed particle hydrodynamics The initial properties of the system: see below
A method to describe the boundaries: sphere-in-box with periodic B.C.s

Complex Calculation: Next steps

$>$ Now that we have the basis of a code, can we now run complex physical calculations?

$>$ It must first be rigorously tested!
$>$ To test codes, we must run simple test problems where an analytical answer is known $>$ In numerical hydrodynamics, a common and simple test problem is the Sod Shock Tube (Sod 1978)

Sod Shock

Sod Shock

Evolution

$>$ Ringing and instabilities occur at the shock wave and propagate backwards

